// Adapted from https://github.com/datenwolf/linmath.h #ifndef LINMATH_H #define LINMATH_H #include #ifdef _MSC_VER //#define inline __inline #endif // clang-format off namespace linmath { #define LINMATH_H_DEFINE_VEC(n) \ typedef float vec##n[n]; \ static inline void vec##n##_copy(vec##n r, vec##n const v) \ { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = v[i]; \ } \ static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = a[i] + b[i]; \ } \ static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \ { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = a[i] - b[i]; \ } \ static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \ { \ int i; \ for (i = 0; i < n; ++i) \ r[i] = v[i] * s; \ } \ static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \ { \ float p = 0.; \ int i; \ for (i = 0; i < n; ++i) \ p += b[i] * a[i]; \ return p; \ } \ static inline float vec##n##_len(vec##n const v) \ { \ return (float)sqrt(vec##n##_mul_inner(v, v)); \ } \ static inline void vec##n##_norm(vec##n r, vec##n const v) \ { \ float k = 1.f / vec##n##_len(v); \ vec##n##_scale(r, v, k); \ } LINMATH_H_DEFINE_VEC(2) LINMATH_H_DEFINE_VEC(3) LINMATH_H_DEFINE_VEC(4) static inline void vec3_set(vec3 r, float v0, float v1, float v2) { r[0] = v0; r[1] = v1; r[2] = v2; } static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; } static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) { float p = 2.f * vec3_mul_inner(v, n); int i; for (i = 0; i < 3; ++i) r[i] = v[i] - p * n[i]; } static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) { r[0] = a[1] * b[2] - a[2] * b[1]; r[1] = a[2] * b[0] - a[0] * b[2]; r[2] = a[0] * b[1] - a[1] * b[0]; r[3] = 1.f; } static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) { float p = 2.f * vec4_mul_inner(v, n); int i; for (i = 0; i < 4; ++i) r[i] = v[i] - p * n[i]; } typedef vec4 mat4x4[4]; static inline void mat4x4_identity(mat4x4 M) { int i, j; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) M[i][j] = i == j ? 1.f : 0.f; } static inline void mat4x4_dup(mat4x4 M, mat4x4 N) { int i, j; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) M[i][j] = N[i][j]; } static inline void mat4x4_row(vec4 r, mat4x4 M, int i) { int k; for (k = 0; k < 4; ++k) r[k] = M[k][i]; } static inline void mat4x4_col(vec4 r, mat4x4 M, int i) { int k; for (k = 0; k < 4; ++k) r[k] = M[i][k]; } static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) { int i, j; for (j = 0; j < 4; ++j) for (i = 0; i < 4; ++i) M[i][j] = N[j][i]; } static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) { int i; for (i = 0; i < 4; ++i) vec4_add(M[i], a[i], b[i]); } static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) { int i; for (i = 0; i < 4; ++i) vec4_sub(M[i], a[i], b[i]); } static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) { int i; for (i = 0; i < 4; ++i) vec4_scale(M[i], a[i], k); } static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z) { int i; vec4_scale(M[0], a[0], x); vec4_scale(M[1], a[1], y); vec4_scale(M[2], a[2], z); for (i = 0; i < 4; ++i) { M[3][i] = a[3][i]; } } static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) { mat4x4 temp; int k, r, c; for (c = 0; c < 4; ++c) for (r = 0; r < 4; ++r) { temp[c][r] = 0.f; for (k = 0; k < 4; ++k) temp[c][r] += a[k][r] * b[c][k]; } mat4x4_dup(M, temp); } static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) { int i, j; for (j = 0; j < 4; ++j) { r[j] = 0.f; for (i = 0; i < 4; ++i) r[j] += M[i][j] * v[i]; } } static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) { mat4x4_identity(T); T[3][0] = x; T[3][1] = y; T[3][2] = z; } static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z) { vec4 t = {x, y, z, 0}; vec4 r; int i; for (i = 0; i < 4; ++i) { mat4x4_row(r, M, i); M[3][i] += vec4_mul_inner(r, t); } } static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) { int i, j; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f; } static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle) { float s = sinf(angle); float c = cosf(angle); vec3 u = {x, y, z}; if (vec3_len(u) > 1e-4) { mat4x4 T, C, S = {{0}}; vec3_norm(u, u); mat4x4_from_vec3_mul_outer(T, u, u); S[1][2] = u[0]; S[2][1] = -u[0]; S[2][0] = u[1]; S[0][2] = -u[1]; S[0][1] = u[2]; S[1][0] = -u[2]; mat4x4_scale(S, S, s); mat4x4_identity(C); mat4x4_sub(C, C, T); mat4x4_scale(C, C, c); mat4x4_add(T, T, C); mat4x4_add(T, T, S); T[3][3] = 1.; mat4x4_mul(R, M, T); } else { mat4x4_dup(R, M); } } static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) { float s = sinf(angle); float c = cosf(angle); mat4x4 R = { {1.f, 0.f, 0.f, 0.f}, {0.f, c, s, 0.f}, {0.f, -s, c, 0.f}, {0.f, 0.f, 0.f, 1.f} }; mat4x4_mul(Q, M, R); } static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) { float s = sinf(angle); float c = cosf(angle); mat4x4 R = { {c, 0.f, s, 0.f}, {0.f, 1.f, 0.f, 0.f}, {-s, 0.f, c, 0.f}, {0.f, 0.f, 0.f, 1.f} }; mat4x4_mul(Q, M, R); } static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) { float s = sinf(angle); float c = cosf(angle); mat4x4 R = { {c, s, 0.f, 0.f}, {-s, c, 0.f, 0.f}, {0.f, 0.f, 1.f, 0.f}, {0.f, 0.f, 0.f, 1.f} }; mat4x4_mul(Q, M, R); } static inline void mat4x4_invert(mat4x4 T, mat4x4 M) { float idet; float s[6]; float c[6]; s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1]; s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2]; s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3]; s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2]; s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3]; s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3]; c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1]; c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2]; c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3]; c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2]; c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3]; c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3]; /* Assumes it is invertible */ idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] - s[4] * c[1] + s[5] * c[0]); T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; } static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) { float s = 1.; vec3 h; mat4x4_dup(R, M); vec3_norm(R[2], R[2]); s = vec3_mul_inner(R[1], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[1], R[1], h); vec3_norm(R[2], R[2]); s = vec3_mul_inner(R[1], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[1], R[1], h); vec3_norm(R[1], R[1]); s = vec3_mul_inner(R[0], R[1]); vec3_scale(h, R[1], s); vec3_sub(R[0], R[0], h); vec3_norm(R[0], R[0]); } static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) { M[0][0] = 2.f * n / (r - l); M[0][1] = M[0][2] = M[0][3] = 0.f; M[1][1] = 2.f * n / (t - b); M[1][0] = M[1][2] = M[1][3] = 0.f; M[2][0] = (r + l) / (r - l); M[2][1] = (t + b) / (t - b); M[2][2] = -(f + n) / (f - n); M[2][3] = -1.f; M[3][2] = -2.f * (f * n) / (f - n); M[3][0] = M[3][1] = M[3][3] = 0.f; } static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) { M[0][0] = 2.f / (r - l); M[0][1] = M[0][2] = M[0][3] = 0.f; M[1][1] = 2.f / (t - b); M[1][0] = M[1][2] = M[1][3] = 0.f; M[2][2] = -2.f / (f - n); M[2][0] = M[2][1] = M[2][3] = 0.f; M[3][0] = -(r + l) / (r - l); M[3][1] = -(t + b) / (t - b); M[3][2] = -(f + n) / (f - n); M[3][3] = 1.f; } static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) { /* NOTE: Degrees are an unhandy unit to work with. * linmath.h uses radians for everything! */ float const a = 1.f / (float) tan(y_fov / 2.f); m[0][0] = a / aspect; m[0][1] = 0.f; m[0][2] = 0.f; m[0][3] = 0.f; m[1][0] = 0.f; m[1][1] = a; m[1][2] = 0.f; m[1][3] = 0.f; m[2][0] = 0.f; m[2][1] = 0.f; m[2][2] = -((f + n) / (f - n)); m[2][3] = -1.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = -((2.f * f * n) / (f - n)); m[3][3] = 0.f; } static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) { /* Adapted from Android's OpenGL Matrix.java. */ /* See the OpenGL GLUT documentation for gluLookAt for a description */ /* of the algorithm. We implement it in a straightforward way: */ vec3 f; vec3 s; vec3 t; vec3_sub(f, center, eye); vec3_norm(f, f); vec3_mul_cross(s, f, up); vec3_norm(s, s); vec3_mul_cross(t, s, f); m[0][0] = s[0]; m[0][1] = t[0]; m[0][2] = -f[0]; m[0][3] = 0.f; m[1][0] = s[1]; m[1][1] = t[1]; m[1][2] = -f[1]; m[1][3] = 0.f; m[2][0] = s[2]; m[2][1] = t[2]; m[2][2] = -f[2]; m[2][3] = 0.f; m[3][0] = 0.f; m[3][1] = 0.f; m[3][2] = 0.f; m[3][3] = 1.f; mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); } typedef float quat[4]; static inline void quat_identity(quat q) { q[0] = q[1] = q[2] = 0.f; q[3] = 1.f; } static inline void quat_add(quat r, quat a, quat b) { int i; for (i = 0; i < 4; ++i) r[i] = a[i] + b[i]; } static inline void quat_sub(quat r, quat a, quat b) { int i; for (i = 0; i < 4; ++i) r[i] = a[i] - b[i]; } static inline void quat_mul(quat r, quat p, quat q) { vec3 w; vec3_mul_cross(r, p, q); vec3_scale(w, p, q[3]); vec3_add(r, r, w); vec3_scale(w, q, p[3]); vec3_add(r, r, w); r[3] = p[3] * q[3] - vec3_mul_inner(p, q); } static inline void quat_scale(quat r, quat v, float s) { int i; for (i = 0; i < 4; ++i) r[i] = v[i] * s; } static inline float quat_inner_product(quat a, quat b) { float p = 0.f; int i; for (i = 0; i < 4; ++i) p += b[i] * a[i]; return p; } static inline void quat_conj(quat r, quat q) { int i; for (i = 0; i < 3; ++i) r[i] = -q[i]; r[3] = q[3]; } static inline void quat_rotate(quat r, float angle, vec3 axis) { int i; vec3 v; vec3_scale(v, axis, sinf(angle / 2)); for (i = 0; i < 3; ++i) r[i] = v[i]; r[3] = cosf(angle / 2); } #define quat_norm vec4_norm static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) { /* * Method by Fabian 'ryg' Giessen (of Farbrausch) t = 2 * cross(q.xyz, v) v' = v + q.w * t + cross(q.xyz, t) */ vec3 t = {q[0], q[1], q[2]}; vec3 u = {q[0], q[1], q[2]}; vec3_mul_cross(t, t, v); vec3_scale(t, t, 2); vec3_mul_cross(u, u, t); vec3_scale(t, t, q[3]); vec3_add(r, v, t); vec3_add(r, r, u); } static inline void mat4x4_from_quat(mat4x4 M, quat q) { float a = q[3]; float b = q[0]; float c = q[1]; float d = q[2]; float a2 = a * a; float b2 = b * b; float c2 = c * c; float d2 = d * d; M[0][0] = a2 + b2 - c2 - d2; M[0][1] = 2.f * (b * c + a * d); M[0][2] = 2.f * (b * d - a * c); M[0][3] = 0.f; M[1][0] = 2.f * (b * c - a * d); M[1][1] = a2 - b2 + c2 - d2; M[1][2] = 2.f * (c * d + a * b); M[1][3] = 0.f; M[2][0] = 2.f * (b * d + a * c); M[2][1] = 2.f * (c * d - a * b); M[2][2] = a2 - b2 - c2 + d2; M[2][3] = 0.f; M[3][0] = M[3][1] = M[3][2] = 0.f; M[3][3] = 1.f; } static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) { /* XXX: The way this is written only works for othogonal matrices. */ quat_mul_vec3(R[0], q, M[0]); quat_mul_vec3(R[1], q, M[1]); quat_mul_vec3(R[2], q, M[2]); R[3][0] = R[3][1] = R[3][2] = 0.f; R[3][3] = 1.f; } static inline void quat_from_mat4x4(quat q, mat4x4 M) { float r = 0.f; int i; int perm[] = {0, 1, 2, 0, 1}; int* p = perm; for (i = 0; i < 3; i++) { float m = M[i][i]; if (m < r) continue; m = r; p = &perm[i]; } r = (float) sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]); if (r < 1e-6) { q[0] = 1.f; q[1] = q[2] = q[3] = 0.f; return; } q[0] = r / 2.f; q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r); q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r); q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r); } } // namespace linmath // clang-format on #endif