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Abstract

In this paper we combine several image processing
techniques with the depth images captured by a Kinect
sensor to successfully recognize the five distinct human
postures of sitting, standing, stooping, kneeling, and lying.

The  proposed  recognition  procedure  first  uses  back‐
ground  subtraction  on  the  depth  image  to  extract  a
silhouette  contour  of  a  human.  Then,  a  horizontal
projection  of  the  silhouette  contour  is  employed  to
ascertain  whether  or  not  the  human is  kneeling.  If  the
figure  is  not  kneeling,  the  star  skeleton  technique  is
applied  to  the  silhouette  contour  to  obtain  its  feature
points. We can then use the feature points together with
the centre of gravity to calculate the feature vectors and
depth  values  of  the  body.  Next,  we  input  the  feature
vectors  and  the  depth  values  into  a  pre-trained  LVQ
(learning vector quantization) neural network; the outputs
of this  will  determine the postures of  sitting (or stand‐
ing),  stooping,  and lying.  Lastly,  if  an output  indicates
sitting or standing, one further, similar feature identifica‐
tion technique is needed to confirm this output. Based on
the  results  of  many  experiments,  using  the  proposed
method, the rate of successful recognition is higher than
97%  in  the  test  data,  even  though  the  subjects  of  the
experiments may not have been facing the Kinect sensor
and  may  have  had  different  statures.  The  proposed

method can be called a “hybrid recognition method”, as
many techniques are combined in order to achieve a very
high recognition rate paired with a very short processing
time.

Keywords Posture Recognition, Neural Network Applica‐
tion, Feature Extraction, Image Processing

1. Introduction

In recent years, methods of human posture recognition
have been studied in a range of different papers. In general,
these methods can be divided into two types. The first type
involves wearable sensors, which are put on the body or
clothes of a human to measure certain values, such as the
positions of limbs and the slope degree of the body. For
instance, one study asked a participant to wear a garment
with strain sensors to recognize 27 upper body postures [1].
In [2] and [3], the authors proposed a smart shirt system
(SMASH) with acceleration sensors to recognize 21 human
exercise postures. A waist-mounted triaxial accelerometer
system was developed in [4] to classify human movement
status. A wireless acceleration measuring system to
monitor a human’s activity volume and recognize emer‐
gent situations was built in [5]. However, a disadvantage
of all five of these studies was that the wearable sensors and
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the accompanying batteries that the participants were
required to wear can be a source of discomfort or incon‐
venience for them.

The other type of method used to recognize posture
information is based on captured images of a human body.
Some posture features can be represented by specifically
coloured markers on the human torso and limbs. By
recognizing the relative positions of the coloured markers,
human postures can be recognized using the methods
presented in [6, 7] and [8]. However, wearing coloured
markers can be just as uncomfortable as wearing sensor
devices.

Many studies have used image processing techniques to
extract features from images of a human, using those
features to identify the posture. More than 10 parameters
(lengths and the largest widths of the upper and lower
body, etc.) were used in [9] to recognize human postures
including standing, sitting, kneeling and stooping. A 3D
human-body-posture recognition method was proposed in
[10] and [11] in which horizontal and vertical projections of
a human body were extracted and compared to the
corresponding projections of predefined 3D human
posture models; this enabled the postures of standing,
sitting, lying and stooping to be recognized. The human
skeleton was analysed geometrically to produce posture
classification results in [12, 13] and [14]. A segmentation
algorithm using deformable triangulation or a set of
Gaussian mixture models was proposed in [15-18] to divide
the posture into different body parts. Moreover, in [19] a
number of heuristic rules based on body-shape character‐
istics and skin-colour features were used to estimate five
significant points, namely the tips of both hands, both feet,
and the head of a human silhouette contour. The authors
of [20] used entropy measurement as an underlying feature
and a modified Hausdorff distance to evaluate the similar‐
ities between the posture which was being recognized and
the posture template database. A temporal difference
image sensor was used in [21] to extract the size and
position of invariant line features, and then a Hausdorff
distance classifier was employed to measure the similari‐
ties of those features against a library of objects. In [22], the
authors extracted features using a discrete Fourier trans‐
form and then used a neural fuzzy network to classify the
human body postures. In [23], the authors used a Support
Vector Machine (SVM) to classify human postures from
images captured by a time-of-flight sensor. The study
presented in [24] applied height and width ratios and
horizontal and vertical projections as fuzzy logic inputs for
posture recognition. Some studies have used a Kinect
sensor to recognize human postures; for instance, the
authors of [25] presented a method which uses histograms
of 3D joint locations from Kinect depth maps and discrete
HMM (hidden Markov model) to achieve human posture
recognition. To recognize the four human postures stand‐
ing, sitting, lying and bending, a method was proposed in
[26] based on the human skeleton captured by a Kinect

sensor. The authors of [27] recognized three human
gestures from the vectors of 20 body-joint positions
captured by a Kinect sensor. A method was developed in
[28] that was based on colour and depth information
gathered from similar sensor. Implementing a multilayer
framework to understand human activity, in [29] a Kinect
sensor was used to acquire a D-RGB-based skeleton
tracking output for human activity recognition. In [30],
SVM was applied to classify different postures by nine
features, including forearm and thigh, as captured by a
Kinect sensor. All of the above studies extracted features
from images and used various classifiers to identify the
different postures. Recognition rate, number of postures
successfully recognized, computation time, and cost of the
devices should be of concern for all proposed recognition
methods.

In this paper, a new posture recognition method is pro‐
posed. The method uses only two devices to achieve its
function: a laptop computer and a Kinect sensor. The Kinect
sensor consists of a depth sensor, an RGB camera, a multi-
array microphone and a motorized tilt [31]. The depth
sensor is composed of an infrared ray emitter and a
monochrome CMOS sensor to capture depth images with
a resolution of 320×240 pixels; the RGB camera is used to
capture colour images with a resolution of 640×480 pixels.
The multi-array microphone can be used to receive the
sound signal, but it will not be used in this study. The
motorized tilt can adjust the Kinect sensor’s elevation
angle. The USB port is used for communication between
the laptop computer and the Kinect sensor. The laptop
computer is an Intel i5-520 running at 2.4GHz with 4G bytes
DRAM. The image processing techniques used encompass
the horizontal and vertical projection, star skeleton, LVQ
neural network and image processing techniques. Five
human postures, standing, sitting, stooping, kneeling, and
lying, will be recognized. The reason for selecting these five
postures is that they are the general and basic postures of
the human form. Conclusions about other postures not
mentioned here may be extrapolated from the gained
results.

This study contributes to research about automatic home
care systems. Elderly people who live alone can often
benefit from a robot to provide home care services. These
robots must have an ability to recognize the person’s
postures in normal and dangerous situations, in order to
send accurate reports to the care centre.

The main contributions of this paper are as follows. Only
one Kinect sensor is used, so the participant does not need
to wear any sensors on their body. Because we are using
the Kinect depth sensor, the captured image is unaffected
by illumination of the environment, shadows, or similari‐
ties in the colour of the participant’s clothing and that of
the background. Three posture recognition methods
involving body width and height ratio, neural network and
length ratio are combined to recognize total five postures
even when the subjects are facing in different directions.
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Since it is the fusion of many techniques that helps the
method achieve a very high recognition rate in a very short
processing time, the proposed method can be called a
“hybrid recognition method”. Note that this paper does not
use Kinect SDK software in the recognition process; this is
in contrast to the studies presented in [25-27], which all
used the SDK skeleton to recognize postures. Comparisons
between the results of the proposed method and those in
[25-27] will be discussed in Section 4.

This paper is organized as follows. Section 2 introduces the
techniques used for extracting the body posture features.
Section 3 describes the training of the LVQ neural network
and a final identification method for human-body-posture
recognition. Then, the experimental results are shown and
a discussion provided in section 4. The final section
presents a conclusion.

2. Depth Image Processing

In this study, five human postures, standing, sitting,
stooping, kneeling, and lying, will be recognized. Several
image processing techniques will be introduced and
implemented.

2.1 Human Silhouette Segmentation

First, the Kinect sensor captures a background depth image
without any humans. Next, it captures one more image
with a human and subtracts the current depth image from
the background depth image to get the subtractive image.
The subtraction result is then binarized to create a binary
image in which black pixels denote background and white
pixels are foreground. Then, erosion and dilation are
applied several times to repair the imperfections of the
human silhouette and to remove noise. The above process

is demonstrated in Figures 1(a), (b) and (c). If the noise is
not cleaned completely, the connected components method
is applied to extract the largest region of white pixels, which
is regarded as the human silhouette in the binary image as
shown in Figure 1(c). The whole process of human silhou‐
ette segmentation is shown in Figure 2. Since the effective
detection range of the Kinect sensor is between 2 m and 4
m, the human subject should stand inside this range. The
size of the segmented human silhouette is at least 3000
pixels in our experiments, so 3000 is set as a threshold to
judge whether the human subject is in the detection range
or not. If the size of the segmented human silhouette is not
larger than 3000 pixels, the following processes will not
start.

There are two advantages to capturing the human image
using the Kinect sensor. One is related to the influences of
illumination. The shadow effects of the subject can be
eliminated, since the Kinect sensor can be considered a
distance measurement sensor. The captured depth image
consists of only a set of distance values between the sensor
and the measured objects in the sensing range. There is no
illumination information in the depth image. The other
advantage is that there is no colour information in the depth
image. If there is a white object in the background, and the
human wears white clothes in the image captured by a
regular camera, then background subtraction will result in
an incomplete silhouette contour of the human’s body
which cannot be used to recognize the human’s postures.
In order to obtain a clear and complete human silhouette,
the Kinect sensor can therefore be a highly useful tool.

2.2 Feature Extraction

Since the extracted features form the entirety of the data
from which the postures will be recognized, they are of

Figure 1. (a) The background depth image. (b) The depth image with a human. (c) The human silhouette.

Figure 2. The flow chart of the human silhouette segmentation
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great importance in this process. An overview of some of
these features follows.

2.2.1 The ratio of the upper and lower human body

First, the silhouette’s centre of gravity must be calculated.
The silhouette is divided into the upper and lower body
based on the centre of gravity, so that the upper body is the
part of the silhouette above the centre of gravity and the
lower body is the part below the centre of gravity. The
centre of gravity can be calculated by (1).
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where (xc, yc) is the coordinate of the centre of gravity inside
the silhouette. Nc is the total number of white pixels, and
xi and yi are x-axis and y-axis values of the i-th pixel inside
the silhouette, respectively. The red point in Figure 3 is the
silhouette’s centre of gravity.

Figure 3. The centre of gravity of a clean human silhouette

Then, the body width can be obtained by computing the
horizontal projection histogram for each row of pixels
inside the silhouette from top to the bottom. According to
the position of the centre of gravity, the maximum values
of the projection histogram on the upper and lower body
can be found respectively, as shown in Figure 4. The ratio
between the maximum value of the projection histogram
on the upper body and that on the lower body is calculated
from equation (2).
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where NU  is the maximum upper-body width value and
NL  is the maximum lower-body width value; Kp is the

ratio, which can be a feature value of human posture. It
should be noted that the lateral kneeling posture is very
different from other postures in terms of the ratio of upper
and lower body, as it is much larger. Therefore, the ratio is
especially useful when recognizing the kneeling posture.
Based on the experiments, it is found that when the human
is kneeling, his feature value Kp is the largest among all of
the postures, as shown in Figure 5. To distinguish the
kneeling posture, a threshold value is given; when Kp ≥1.4,
the human’s posture is judged to be the lateral kneeling
posture. The selection of the threshold value 1.4 will be
explained in section 3 below.

Figure 4. The maximum widths of upper body and lower body for different
postures. (a) Standing, (b) sitting, and (c) kneeling.

Figure 5. The horizontal projection histogram of the lateral kneeling posture

2.2.2 The establishment of the feature vectors

Since the centre of gravity of the human silhouette is
known, the distance between the centre of gravity and the
edge contour of the human silhouette can be calculated by
equation (3).

2 2( ) ( )e e
i i c i cd x x y y= - + - (3)

where di denotes the distance values between (xi
e, xi

e) (any
point on the edge contour) and the centre of gravity
(xc, yc). The calculation of distance values starts from the
left-most edge point and moves in a clockwise direction to
the end point, which is near the start point as shown in
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Figure 6. Then, a sequence curve of distance values di is
obtained as shown in Figure 7.

Figure 6. The calculation sequence of the distance values di

Figure 7. The sequence curve of the distance values di

Let the curve in Figure 7 be filtered through a low-pass filter
to remove the noise, thus obtaining the smoother curve
denoted by d̂ i as shown in Figure 8, where the green points
denote tip points such as the human head, hands, and feet,
as the feature points of the silhouette. It can be seen that the
green points in Figure 8 are the blue points of the contour
in Figure 6.

Figure 8. The peak points on the distance value curve

After obtaining the feature points, the next task is to acquire
the feature vectors. First we let (xpi, ypi) denote the location
of the feature point pi, and connect each feature point to the
centre of gravity. Then, a feature skeleton structure is
obtained as shown in Figure 9. However, the centre of
gravity may be not within the human’s silhouette (see
Figure 9(b)), such that the feature skeleton may be incorrect.
In this situation, the centre of gravity must be repositioned
to within the silhouette in order to obtain a true feature
skeleton. A vertical line and a horizontal line crossing on

the centre of gravity are therefore plotted and the line with
two crossing points exactly on the human’s silhouette is
chosen. Finally, the centre of gravity is shifted to the centre
position of the two crossing points. The new gravity point
is shown in Figure 10.

Figure 9. Feature skeleton when the centres of gravity are (a) inside the
human silhouette and (b) outside the human silhouette

Figure 10. New centre of gravity on (a) a sitting posture with raised arms
and (b) a stooping posture

Let each branch of the feature skeleton shown in Figure 9
be one of the human feature vectors V i = x̂(pi), ŷ(pi)  which
denotes the vector from the feature point pi to the centre of
gravity, as in equation (4).
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Then, the Cartesian coordinate x̂(pi), ŷ(pi)  is transformed
into a polar coordinate L i,  θi  as follows:
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where i=1, 2,..., m, and m is the total number of branches
of the feature skeleton. In general the maximum number
of  branches  is  five.  The transformation is  illustrated in
Figure 11.
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Figure 11. Feature vectors with (a) Cartesian coordinate and (b) polar
coordinate

3. LVQ neural network and a final identification

After feature extraction, the LVQ neural network is applied
to classify the postures using the extracted feature vectors.
The LVQ shown in Figure 12 is a supervised neural network
which is often used for pattern classification (see [32-34]).
In this study, we decided to use an LVQ as the classifier of
human posture recognition because of its simple structure,
fast operation, and strong fault tolerance [34]. However,
two things should be noted regarding the training of the
LVQ neural network. First, the input arrangement of the
LVQ neural network should be ordered; second, the feature
vectors V i should be normalized as V̄ i. The following is a
detailed explanation of these two points.

Figure 12. The structure of the LVQ neural network

3.1 Inputs arrangement in LVQ neural network

Let the LVQ neural network have 12 inputs which contain
10 feature vectors and the two depth values D1 and D2 (D1

and D2 will be defined later). According to experimental
experience, the order of the feature vectors which are
inputted into the network will affect the recognition rate.
Therefore, two order arrangements of feature vectors are
proposed, as shown in Table 1, in which U i is the i-th input
neuron of the LVQ neural network, and �j is the length and
Θ j is the angle of the j-th feature vector, respectively.

U1 U2 U3 U4 U5 U6

�1
Θ1 �2 Θ2 D1 �3

U7 U8 U9 U10 U11 U12

Θ3 D2 �4 Θ4 �5 Θ5

Table 1. The Order Arrangement for Input Neurons

In order to arrange the inputs of the LVQ neural network,
let two disks be divided into six regions with different
degree ranges as shown in Figure 13. If any one feature
vector is located in Region 1, which is the sector between
45°  and 135°  (see the left side of Figure 13), then order
arrangement I is followed. Otherwise, order arrangement
II is followed (see the right side of Figure 13). The two
arrangements are presented below.

Figure 13. The region division for the inputs of the LVQ neural network. (a)
Order arrangement I. (b) Order arrangement II.

(I) Order arrangement I (used if any one feature vector is located
in Region 1, which is a sector between 45°  and 135°  as shown
inFigure 13(a)).

Stage 1. There is a feature vector in Region 1 whose angle
is much closer to 90°  than all other feature vectors. This
feature vector is called V1. Then, �1 = L 1 and Θ1 =θ1 are
assigned.

Stage 2. If there exist feature vectors in Region 2, the vector
angle which is closest to, but does not exceed, 270° , will be
called V2. Then, �2 = L 2 and Θ2 =θ2 are assigned. If V2 does
not exist, then �2 =0 and Θ2 =0 are assigned.

Stage 3. If there is a feature vector in Region 3 whose angle
is much closer to 270°  than all other feature vectors, it will
be called V3. Then, �3 = L 3 and Θ3 =θ3 are assigned. If V3 does
not exist, then �3 =0 and Θ3 =0°  are assigned.
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Stage 4. If there is a feature vector which does not satisfy
the above three conditions, but whose angle is the closest
to, and anticlockwise of, 0° , this feature vector is called
V4. Then, �4 = L 4 and Θ4 =θ4 are assigned. Then go to stage 5.
If V4 does not exist, this means that there are no remaining
vectors, so �4 =0, Θ4 =0, �5 =0 and Θ5 =0 are assigned. Then
move on to stage 6.

Stage 5. If one final vector feature remains, it will be called
V5. Then, �5 = L 5 and Θ5 =θ5 are assigned. If V̄ 5 does not exist,
�5 =0 and Θ5 =0 are assigned.

Stage 6. The remaining inputs are D1 and D2, where

D1 =
DR −DC

100  and D2 =
DL −DC

100 . DR is the depth value of the

terminal point of the feature vector V2, DL  is the depth
value of the terminal point of the feature vector V3 and DC

is the depth value of the centre of gravity (see Figure 14).

Figure 14. The depth values

Figure 15 shows the order of the feature vectors when using
order arrangement I for the standing and lateral sitting
postures. It is seen that there must be at least one feature
vector in Region 1 when the order arrangement I is used;
in other words, the position of the human’s head is in
Region 1. Therefore, by using order arrangement I for the
inputs of the LVQ network, the standing and sitting
postures can be recognized. Furthermore, D1 and D2 are
used to establish recognition of the forward-facing sitting
posture in which the centre of gravity, V2 and V3 have
different depth values.

(II) Order arrangement II (used if there is no feature vector
located in Region 1).

Stage 1. If there is a feature vector in Region 4 whose angle
is much closer to 180°  than all the other feature vectors, this
feature vector is called V1. Then, �1 = L 1 and Θ1 =θ1 are
assigned. Otherwise, �1 =0 and Θ1 =0 are assigned.

Stage 2. If there exist feature vectors in Region 5, the vector
angle closest to 0°  will be called V2. Then, �2 = L 2 and Θ2 =θ2

are assigned. If there is no feature in this region, then �2 =0
and Θ2 =0 are assigned.

Stage 3. If there exists a feature vector in Region 6 whose
angle is closer to 0°  than all other feature vectors, this
feature vector will be called V3. Then, �3 = L 3 and Θ3 =θ3 are
assigned. If there is no feature in this region, then �3 =0 and
Θ3 =0 are assigned.

Stage 4. If there is a feature vector which does not satisfy
the above three conditions, but whose angle is the closest
to, and anticlockwise of 0° , this feature vector is called V4.
Then, �4 = L 4 and Θ4 =θ4 are assigned. Then go to the next
stage. If V4 does not exist, then there are no remaining
vectors; then, �4 =0, Θ4 =0, �5 =0 and Θ5 =0 are assigned. Go to
stage 6.

Stage 5. If there is a last remaining vector feature called
V5, then �5 = L 5 and Θ5 =θ5 are assigned. If V5 does not exist,
then �5 =0 and Θ5 =0 are assigned.

Stage 6. Lastly, the remaining inputs D1 =0 and D2 =0 are set.

Figure 16 shows the lying and stooping postures with their
feature vectors arranged according to order arrangement
II. The order arrangement II is used for recognizing those
postures in which there must be feature vectors in Region
4, Region 5, or Region 6; in other words, the human’s head
is considered to be in Region 4, Region 5, or Region 6.
Therefore, using order arrangement II for the inputs of the
LVQ neural network, the lying and stooping postures can
be recognized. Furthermore, D1 and D2 are not used in order
arrangement II.

3.2 Feature vectors normalization

Having assigned the order of the inputs of the LVQ neural
network, it should be noted that if the human is far away
from (or near to) the Kinect sensor, then the perceived size
of the human will be smaller (or larger). This may affect the

Figure 15. The feature vector arrangement according to order arrangement
I. (a) Standing. (b) Sitting.

7Wen-June Wang, Jun-Wei Chang, Shih-Fu Haung and Rong-Jyue Wang:
Human Posture Recognition Based on Images Captured by the Kinect Sensor



accuracy of the recognition; therefore, the values in Table
1 should be normalized in advance. Let L̄ i = �i / L max and
θi =Θi / 360, where L max =max

i
(L i),  i =1, .., m. Then, the

normalized feature vector is denoted by V̄ i. Therefore,
Table 1 should be replaced by Table 2 as follows. Another
advantage of normalizing the feature vectors is that no
matter what the height of the human subject, the feature
vectors are only ratio values, so that the proposed posture
recognition algorithm can apply to different statures.

U1 U2 U3 U4 U5 U6

L̄ 1
θ̄1 L̄ 2 θ̄2 D1 L̄ 3

U7 U8 U9 U10 U11 U12

θ̄3 D2 L̄ 4 θ̄4 L̄ 5 θ̄5

Table 2. The Normalized Order Arrangement for Input Neurons

3.3 The operation of the LVQ network

The previous section has shown how the lateral kneeling
posture is recognized by the upper and lower body ratio of
a human. However, there are still many different postures
to be recognized. Using an LVQ neural network is the next
recognition process presented here. The used LVQ has 12
input neurons, 600 hidden neurons and four output
neurons. The 12 input neurons contain five lengths and five
angles of feature vectors and two depth values. There are
1105 sets of training data with which to train the LVQ
neural network. Since the hidden layer needs enough
hidden neurons to memorize the training data, the number
of hidden neurons is 600. The four output neurons repre‐
sent the four classes of posture, sitting or standing, stoop‐
ing, and lying, respectively. It is noted that one of those
outputs may denote non-forward sitting or standing;
therefore, an extra check is needed to determine whether
the posture is sitting or standing.

The training data contain 292 standing postures, 320 sitting
postures, 240 stooping postures and 253 lying postures. All
training data contain those postures shown in Figure 17.
Figure 17(a) shows five standing postures with five
orientations, respectively. Figures 17(b), (c), and (d) show

Figure 16. The feature vector arrangement according to order arrangement
II. (a) Lying. (b) Stooping.

the different postures with the different respective orien‐
tations. After training, the weights between the inputs and
the hidden neurons will be obtained.

Figure 17. The postures of the training data. (a) Standing. (b) Sitting. (c)
Stooping. (d) Lying.

The output weights W are set as equation (6).

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1

W

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

L
L

L
L

(6)

where W is a 4×600 matrix. For instance, the element at
position (1, 150) in W is 1 at (6), which means the weight at
the link between hidden neuron X150 and output Y1 is equal
to 1.

The training of the LVQ neural network is stopped when
the input weight variation is less than 0.05, as shown in
Figure 18. The training terminates at the 38th cycle.

Figure 18. The training curve with input weight variation and training cycle

Since the LVQ is a supervised neural network, training and
testing should follow order arrangement I or II when
setting the inputs. The reason for using two order arrange‐
ments is that, based on the results of many experiments, a
much higher recognition rate is achieved when using two
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different arrangements for two different cases than when
only using one arrangement.

3.4 One more check

After obtaining the outputs of LVQ, one more step is
necessary for posture recognition. It can be seen that the
feature vector structure in Figure 19(a) is similar to that in
Figure 19(b), and the vector structure in Figure 19(c) is
similar to that in Figure 19(d), respectively. This causes
confusion of posture recognition in the LVQ neural
network. Therefore, an extra step is needed to determine
the posture when the subject is standing or sitting but not
facing the sensor. The two ratios are defined as follows. One
is Rs = height  of  sitting

width  of  sitting  and the other is Rd = heightof standing
width of standing , where

the numerator and denominator in Rd  or Rs are the width
and height of a human, respectively. It is noted that Rd  is

much larger than Rs as shown in Figure 20. Here, Rs is about
1.92 and Rd  is about 3.83. But what is the best way to
measure the exact height and width of a human? The
simplest method would be to use the distance between the
highest (or left-most) and lowest (or right-most) points of
the silhouette for the height (or the width). However, this
method can easily lead to inaccuracies; for instance, if the
subject were to raise their arms above their head as shown
in Figure 21. Alternatively, if the edge points of the
silhouette to be selected were noise points, then the value
of height (or width) could be incorrect. Therefore, the
following method of measuring the correct height and
width of a human silhouette is necessary.

Here, the horizontal and vertical projection histograms are
considered to obtain the height and width of the human
silhouette. The human’s standing posture is shown on the

Figure 19. Human feature vectors of the non-forward-facing sitting and the standing postures

Figure 20. Ratio of the width and height of the human silhouette contour

Figure 21. The hands at different positions
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left side of Figure 22, and the horizontal projection histo‐
gram of this posture is shown on the right side of Figure
22. In order to exclude the possible noise above the head
and below the sole of the foot, a row on the horizontal
projection histogram is selected in which the number of
accumulated pixels is greater than five; then, the number
of all such rows will be considered to correspond to the
height of the person. In other words, rows with fewer than
five accumulated pixels are ignored. In Figure 22, the length
of the interval yE , yF  is the height of the person, where yE

is the y-axis value of the point E and yF  is the y-axis value
of the point F. On the other hand, the vertical projection
histogram is used to measure the width of the person.
However, some errors may occur due to noise or the subject
raising their arm or arms (see Figure 23). Therefore, from
each column of vertical projection, the two points (such as
points C and D in Figure 23) which have the highest
positive slope and negative slope are chosen, respectively.
The length of the interval xC , xD  will be the width of the
human silhouette without arms where xC  is the x-axis value
of the point C and xD is the x-axis value of the point D.
Finally, the ratio of the width and height R is calculated as
follows:

E F

C D

y yR
x x

= (7)

when R ≥3.1, the human posture is standing; when R <3.1,
the human posture is sitting.

There are two threshold values in this paper. In order to
find suitable threshold values for Kp in (2) and R in (7), a
lot of measurements are needed. In this study, more than
10 people were each measured more than 10 times with
different distances. We then selected the threshold values
for Kp and R from the average of those measurements.

All techniques for posture recognition have now been
presented. Now let us summarize the above recognition
techniques in the following procedure. A flow chart is also
shown in Figure 24.

3.5 Procedure of the recognition process

Step 1: Image capture and image pre-processing.

Step 2: Feature extraction. The features include the upper
and lower body ratio of the human silhouette Kp, and the
feature vectors. If Kp ≥1.4, then the human’s posture is
judged to be the kneeling posture.

Step 3: The operation of LVQ neural network. The four
postures, sitting facing forward, stooping, lying, and
finally, non-forward-facing standing or sitting can be
identified using the outputs of the LVQ neural network.

Step 4: If one of the outputs of the LVQ network is standing
or sitting, one more check is required, as follows. If R ≥3.1,

Figure 22. Horizontal projection of the standing posture

Figure 23. Vertical projection of the standing posture
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the human’s posture is judged to be “standing”. Otherwise
the posture is judged to be “sitting”.

Figure 24. Flow chart of the posture recognition process

4. Experiment results and discussion

In all the experiments performed for this study, the Kinect
and the PC are on the same table at a height of 70 cm, and
the human subject is in front of the table at a distance of 2.5
to 4.5 m. By using a Kinect sensor, the proposed method is
implemented to recognize five human postures: kneeling,
standing, sitting, stooping and lying. In the experiments,
each posture can be oriented in five different directions:
−90° , −45° , 0° , 45° , and 90° , as shown in Figure 25. The
standing posture shown in Figure 25(a) is tested 80 times
and each orientation is tested 16 times. The sitting posture
shown in Figure 25(b) is tested 100 times and each orienta‐
tion is tested 20 times. The other three postures are tested
80 times each, and each orientation is tested 20 times. The
posture recognition algorithm is implemented in C++
language. Eight students were taken as the subjects of the
experiments. It can be seen from Table 3 that the successful
recognition rate for each experiment subject is over 98.15%.
The successful recognition rate for each posture is over
97.25%, and the total average successful recognition rate is
99.0125%. This is very high.

Although the proposed posture recognition process
contains several steps, in the experiments it takes less than
three milliseconds to recognize a posture. Figure 26 shows

all of the human postures that were successfully recognized
in different environments and with different distances
between the Kinect sensor and the subject, as shown in the
first column of the figure. The fourth indoor environment
is with low luminance. In each case the worst recognition
rate is still over 97%. Figure 27 shows a breakdown of the
computation time required to recognize each of the 10
postures, in which TL indicates the total computation time
for recognizing a certain posture. The remaining notations
Ti, i=1, 2,..., 6, indicate the computation time used by each
step of the posture recognition process and are defined as
follows: T1 is the image processing to remove noise; T2 is
the silhouette contour segmentation from the captured
images; T3 is the horizontal projection and keeling posture
judgment; T4 is the extraction of feature vectors; T5 is the
LVQ neural network recognition of the forward-facing
sitting, stooping and lying postures; and T6 is the identifi‐
cation of the standing or non-forward-facing sitting
postures. If Ti=0, then the i-process is not needed. For
instance, the processes T4, T5 and T6 are not necessary to
recognize posture (iii) in Figure 26. It is seen that T2 is larger
than all the other values of Ti, i=1, 3, 4, 5, 6, for recognition
of all postures, since the segmentation process includes
connected component implementation, which takes more
time due to the large subject silhouettes. It is seen all the 10
postures were successfully recognized in less than three
milliseconds. It can therefore be concluded that the
algorithm can be applied to a real-time posture recognition
application.

Standing Sitting Stooping Kneeling Lying

Recognition
success rate

for each
subject

A 79/80 99/100 80/80 80/80 79/80 99.3%

B 80/80 98/100 76/80 80/80 80/80 98.6%

C 80/80 98/100 80/80 79/80 79/80 98.85%

D 79/80 94/100 80/80 80/80 80/80 98.55%

E 80/80 100/100 80/80 80/80 79/80 99.75%

F 79/80 100/100 80/80 80/80 80/80 99.75%

G 79/80 97/100 80/80 80/80 80/80 99.15%

H 80/80 92/100 79/80 80/80 80/80 98.15%

Recognition
success rate

for each
posture (%)

99.38 97.25 99.22 99.69 99.53 99.0125

Table 3. The Posture Recognition Rates

We compare the performance of the proposed method to
that of three alternative methods proposed in [25, 26] and
[27], respectively. In [25] there are 10 postures to be
recognized: walking, standing up, sitting, picking up,
carrying, throwing, pushing, pulling, waving hands and
clapping hands. Of these 10 postures, three, standing up,
sitting, and picking up, showed performance similar to that
shown for the postures of standing, sitting and stooping,
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respectively, in our paper. Table 4 shows that our recogni‐
tion rate for these three postures is much higher. The study
presented in [26] used four feature extraction methods to
recognize the four postures of standing, sitting, lying, and
bending. We choose those two of the four methods that
have the best recognition accuracy in order to make a
comparison with ours. The chosen two methods used seven
joint-angles with scaling and nine joint-angles with scaling
to extract features, respectively. The comparison is includ‐
ed in Table 4. It is seen that when the test subjects are not
facing the Kinect sensor, the recognition rates of some
postures are very low (see Table 3 in [26]). The study
presented in [27] used four classifiers – back-propagation
neural network, support vector machine, decision tree and
naïve Bayes – to recognize human postures, respectively.
The back-propagation neural network had the highest
success rates. However, the authors only recognized three
postures and did not provide the recognition results of test
subjects facing in different directions. The proposed

method not only recognizes five postures (including the
three postures recognized in [27]), it also deals with test
subjects facing in different directions.

Standing Sitting Stooping Kneeling Lying

Our method 99.38 97.25 99.22 99.69 99.53

Paper [25] 93.5 91.5 97.5 - -

Seven joint-
angles in [26]

81.29 100 44.59 - 89.775

Nine joint-
angles in [26]

76.18 97.39 70.42 - 48.25

Back
propagation

neural network
in [27]

100 100 - - 100

Table 4. A Comparison of the Average Success Rates of Posture Recognition

Figure 25. The recognized postures with different orientations. (a) Standing. (b) Sitting. (c) Stooping. (d) Kneeling. (e) Lying.
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Note that the recognition methods in [25-27] were based on
skeletal joint positions of the subject drawn from the Kinect
software development kit (SDK). If the subject’s head is not
at the top of the silhouette, for example in the postures of
stooping or lying (see Figure 28), these methods may
therefore give incorrect recognition. Even so, we find that
the average recognition time for each image when using the
proposed method is less than three milliseconds; in other
words, the lowest recognition frame rate is 333.33
frames/per second (see Figure 27). It is clear that the
proposed method achieves recognition very fast and with
very high efficiency.

The proposed method does, however, have limitations. For
instance, when the subject is kneeling and facing the Kinect
sensor, the lower legs are hidden, as shown in Figure
29(a), which may cause the recognition process to fail. In
this situation, the horizontal projection cannot display the
features of the kneeling posture clearly where the maxi‐
mum upper-body width value NU  is 67 and the maximum
lower-body width value NL  is 67, as shown in Figure
29(b). Then, the feature value Kp is 1<1.4. According to our
experiments, the recognition of the postures of kneeling,
stooping and lying may fail if the subject’s orientation is not
restricted the [-90o, -45o] or [45o, 90o] ranges.

Figure 26. Illustration of the different environments and tested postures

Figure 27. Breakdown of the total posture recognition computation time
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Figure 28. Skeletal maps as created by the Kinect sensor for Windows SDK
1.8 software [35]

Figure 29. (a) Legs hidden in the kneeling posture. (b) horizontal projection
of the posture in Figure 29(a).

5. Conclusion

This paper has proposed an effective procedure to recog‐
nize the five human postures of standing, sitting, stooping,
kneeling and lying, even when the human subjects have
different statures or orientations. In the experiments, it is
found that the average success rate of the proposed posture
recognition method is higher than 99%. The Kinect sensor
which provides the depth information can avoid the
influence of illumination and shadow in image processing.
By extracting many features and using the LVQ neural
network, an efficient posture recognition procedure is
produced. The proposed posture recognition method has
three advantages: firstly, it has a very high recognition rate;
secondly, it requires fewer training data sets; and finally, it
uses a more economical sensor compared to other methods.
However, it must be admitted that, where part of the
subject’s body is hidden, some further study is required, as
such situations may cause a recognition failure due to
incorrect feature extraction. This issue can be considered as
a subject for future studies.

It is believed that a more reliable method of posture
recognition could recognize more complex postures. In our
future research, we hope to develop a more reliable posture
recognition technique that could prove extremely useful as
part of a homecare system for monitoring elderly people
who live alone. The system will be able to detect abnormal
postures produced by a fall or a medical emergency, and
then immediately alert the emergency services.
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