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ABSTRACT
Human motion estimation is a topic receiving high attention
during the last decades. There is a vast range of applications
that employ human motion tracking, while the industry is
continuously offering novel motion tracking systems, which
are opening new paths compared to traditionally used pas-
sive cameras. Motion tracking algorithms, in their general
form, estimate the skeletal structure of the human body and
consider it as a set of joints and limbs. However, human
motion tracking systems usually work on a single sensor ba-
sis, hypothesizing on occluded parts. We hereby present a
methodology for fusing information from multiple sensors
(Microsoft’s Kinect sensors were utilized in this work) based
on a series of factors that can alleviate from the problem of
occlusion or noisy estimates of 3D joints’ positions.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Motion; I.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis—Sensor Fusion

General Terms
Experimentation, Reliability

Keywords
Kinect-based motion detection, multiple kinects, skeleton
extraction

1. INTRODUCTION AND RELATED WORK
Human motion estimation is an active field of research,

with a multitude of approaches following multifarious paths,
both regarding the algorithms and hardware employed. Multi-
camera systems, usually targeting 3D capturing, are among
the most traditional methods [14]. One of the typical works
is presented in [6], where motion reconstruction of freely
moving humans employs Shape-from-Silhouette (SFS) for
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estimating shape from multiple structures. Multiple video
streams are also used in [12], where the authors use partial
3D reconstructions from different cameras and translate the
problem of motion parameters estimation into a minimiza-
tion problem between pre-defined skin models and recon-
structions. Another family of motion extraction methods
relies on efficient marker-based tracking: markers can be vi-
sual or body-attached sensors (e.g. magnetic [11]). In [8],
skeletal structures are acquired following a series of steps
that segment markers in terms of their motion and joints’
positions are inferred.

Recently, with the advent of the Microsoft Kinect sen-
sor, a lot of attention has been focused on depth sensors.
Kinect captures in real-time (30fps), and releases 2.5D data
of resolution 640 × 480, accompanied with registered RGB
data. One of the major components of the Kinect sensor, is
its ability to infer human motion by extracting human sil-
houettes in skeletal structures. In particular, Fig. 1 shows
the body parts (joints) a Kinect skeleton consists of. A lot
of works have taken advantage of Kinect-based tracking for
applications, mainly related to human activity recognition,
interaction with objects [9], etc. However, most of these
works employ single sensor solutions, especially due to in-
terference with each other, when more than one sensors are
used, resulting to erroneous or missing depth estimates. As
a consequence, self-occluded body parts or conditions where
part of the body is occluded by other objects are not han-
dled.

This work is motivated by augmented reality applications,
where distant users would like to interact in 3D environ-
ments performing specific sports. Thus, the scope is that one
user can be indoors, (e.g. running on a treadmill), captured
by Kinect sensors, and his/her reproduction (in the form of
either an avatar animated by the user’s actual movements
or complete 3D reconstruction) is depicted to the other user.
Multiple Kinect sensors are needed in this case in order to
overcome the problem of (self)occlusions and produce reli-
able skeletons and 3D reconstructions.

Berger et al. [2] have studied the effect of using more than
one Kinect for motion capturing and they propose those
conditions under which effects of interference can be under-
valued to the benefit of performance. Authors in [15] also
employ a multi-Kinect solution to human performance cap-
ture. In particular, they propose a three hand-held Kinects
solution for reconstructing skeletal poses in a joint optimiza-
tion framework of camera parameters and human shape tem-
plates. In Caon et al. [4], the authors also employ a multiple-
Kinect set up for user posture and gesture estimation, in 3D



(a) (b)

Figure 1: Example of occluded human motion. The
treadmill’s bars and console are severelly occluding
the runner’s body.

ID joint

1 Head
2 Neck
3 Left Shoulder
4 Left Elbow
5 Left Hand
6 Right Shoulder
7 Right Elbow
8 Right Hand
9 Torso
10 Left Hip
11 Left Knee
12 Left Foot
13 Right Hip
14 Right Knee
15 Right Foot

Figure 2: Joints tracked by the Kinect Sensor.

smart environments. To our knowledge, this is probably
the only research work proposed for direct fusion of Kinect-
based skeletons, based on confidence values: new skeletons
are constructed based on weighted averages of the original
ones. Weights are defined based on the ability of the sensor
to return joint positions.
In the proposed work, joints’ positions are inferred follow-

ing the maximization of an Energy Function of randomly
sampled candidate positions. Since one or more sensors may
return false detections, we utilize a series of confidence values
(based on expected expressivity, posture and depth measure-
ments), focusing on positions close to actual measurements.
The use of multiple Kinect sensors is targeting environments
where (self)occlusions are frequent (Fig. 1) and can be uti-
lized for robust activity recognition, 3D reconstruction of
humans and other domains where human motion can give
significant information.
The structure of the rest of the paper is the following: Sec-

tion 2 gives details of the multiple skeleton fusing algorithm,
Section 3 presents a series of experiments and the impact of
different parameterizations on the final outcome. Section 4
concludes the paper.

2. METHOD OVERVIEW
Constructing a motion tracking scheme, as a combination

of joints from different Kinect-based skeleton structures, or

building a new skeleton, following a weighting scheme, for
known applications and activities [5] would provide an ef-
ficient framework for training expected joint positions and
discarding those that are far from what would be expected.
For instance, knowing that a person is performing a certain
sport would automatically provide with a knowledge base
for training appropriate motion-related or structural mod-
els. However, estimating joints positions for unknown move-
ments is independent from such domain knowledge. For
this reason, we hereby present a local approach, following a
confidence-based logic regarding expected posture, expres-
sivity and motion history for each body part. More specifi-
cally, in the proposed work, expected 3D position xj of joint
j is based on previous locations, expressivity, posture and
relation to each Kinect’s k depth data, and is calculated fol-
lowing the maximization of the sum of energy functions Ek

j

over a set of candidate positions p:

xj = argmax
x

(
∑
k∈K

Ek
j (p,x)) (1)

with K being the set of all kinect sensors. Ek
j (p,x) is a

weighted combination of distance kernels of candidate po-
sitions from tracked joints, multiplied with the output of a
Mamdani Fuzzy Inference Scheme (FIS). The FIS shceme
has been chosen to fuse the abovementioned factors, in an
effort to model a joint’s probability of representing a true
estimate.

2.1 Calibration of Skeletons
Human torso is the most reliably detected area, even un-

der heavy occlusions, as it can be accurately estimated based
on other features’ 3D positions. Thus, it is used as a refer-
ence pattern for registering skeletons with each other, on a
common coordinate system. In particular, the transforma-
tion under which triangles (xk

1 ,x
k
2 ,x

k
3) formed by the joints

corresponding to the left/right shoulders and the torso joint
(as named in OpenNI) of skeleton k are rigidly aligned on
a reference skeleton k0 is found [3]. Initially, matrix H is
calculated, using (2), and the rotation matrix is extracted
by applying Singular Value Decomposition (SVD) on H (3).
Finally, the 4×4 transformation matrix T is extracted using
(4). Every point on skeleton k is then transformed to the
coordinate system defined by k0 using T (in homogeneous
coordinates).

H =

3∑
l=1

(xk0
l − xk0)(xk

l − xk)T (2)

[U, S, V ] = svd(H) (3)

T =

(
I3×3 xkc

0 1

)(
VUT 0
0 1

)(
I3×3 −xk0

0 1

)
(4)

2.2 Initialization of candidate joint positions
A uniformly sampled swarm of N possible joint positions

Pj = {p1
j ... pN

j } is initialized in the 3D neighborhoods W of

all joints skj (j denotes the joint id and k the skeleton/sensor
it belongs to) 3D positions. Each candidate point is assigned
the id k ∈ K of the skeleton it was initialized with and is
subsequently accordingly translated in the 3D space. In sub-
sequent frames, each point pn

j is assigned a specific weight.



Figure 3: Initialization of candidate positions for
left foot (joint id = 12) from three different Kinect
Sensors.

The weight depends on two main factors. Firstly, on its dis-
tances from skj , for every k ∈ K and, secondly, on a series
of confidence values. These confidence values are modelled
as non-linear functions of corresponding joints expressivity
parameters, their distances on the z-axis from the corre-
sponding values of sensor’s depth map and the possibility
that skj returns natural body parts postures. The following
subsections thoroughly describe the computation of these
parameters.

2.3 Confidence Estimates
For each joint skj , a series of factors are taken into account

and subsequently merged to produce an overall estimate of
the probability that it can constitute a reliable joint po-
sition for the final skeleton. More precisely, the following
confidence estimates are utilized:

2.3.1 Joint Expressivity
In those cases when a joint is occluded, positions are

roughly estimated, often resulting to jerky movements, with
unnaturally high amounts of overall activation. This leads
to highly noisy movements, with very low amounts of fluid-
ity, in comparison to those corresponding to non-occluded
body parts. The concept behind the fluidity expressivity
parameter [7] is that it models the smoothness of single ges-
tures, seeking to capture the continuity between movements.
Considering a time window of T frames, the ”quantity” of
movement (inverse fluidity) at time t, F k

j,t for skj,t is com-
puted as the standard deviation of its Overall Activation
Ok

j,t from the following equations:

Ok
j,t =

∑
t′∈(t−T,T )

∥dskj,t′/dt∥

F k
j,t =

√
E[(Ok

j,t−T..t −Ok
j,t−T..t)(O

k
j,t−T..t −Ok

j,t−T..t)]

(5)
In the following and to favour brevity, index t will only be

referred to when necessary.

2.3.2 Occlusion Handling
Another confidence indicator for joints, able to report

cases of possible occlusions is the error Dk
j between the z-

coordinate of skeleton k joint j and the corresponding depth
value reported by the Kinect sensor at that location, on the

2D depth map. These measurements were acquired by using
the standard OpenNI framework [13] unprojection functions
for the Microsoft Kinect Sensor.

2.3.3 Expected body part posture
Angles formed by adjacent body limbs have also been con-

sidered, as an indicator of expected poses of different body
parts. To this aim, the angles corresponding to the inner
product of the unit vectors −→v0 and −→w0 defining left/right leg
and thigh and the inner product between the unit vectors of
left/right upper and lower arm, were calculated. Expected
(natural) poses for knees and elbows were between 0 and π,
while unnatural angles were between π and 2π. The indica-
tor considered here is described as the inverse probability of
a body part having naturally looking postures:

Ak
j = 1− P (pose|xk

j ) (6)

with pose being the set of expected joint angles, follow-
ing a normal distribution with mean µ=π/2 and standard
deviation σ=π/6.

2.4 Fuzzy Inference of sensor’s noise
For an overall estimate of the noise λk

j attributed to a
kinect sensor tracking a specific joint, a function mapping
F k
j , D

k
j and Ak

j (subsection 2.3) to parameter λk
j is searched

for. An intuitive way to model noise from the above val-
ues, is to construct a Fuzzy Inference System (FIS) with
inputs F k

j , D
k
j and Ak

j and output λk
j at each iteration. A

FIS can model most of the continuous functions mapping
n-dimensional spaces to R. Employing FIS engines is more
straightforward than typical mathematical representations,
since domain knowledge can be expressed in the form of
if...then rules. One of the most widely used types of Fuzzy
Inference Systems is the Mamdani [10] Fuzzy Engine, which
consists of if-then rules that combine degrees of member-

ships µ
inputkj
r of different variables to fuzzy sets S, specific

for every rule. Outputs fk
r,j(F

k
j , D

k
j , A

k
j ) for each rule r are

implicated based on µ
inputkj
r and are further aggregated to

an overall output function which is then used for calculating
the crisp value of λk

j .
Fig. 4 illustrates the FIS architecture. Each input vari-

able for a certain joint is normalized from 0 to 1 using its
current maximum value for all sensors. This is done at each
iteration and, thus, the inputs can be modelled by three
fuzzy sets, namely low, medium and high. Fuzzy sets rep-
resenting medium values were modelled by Gaussian mem-
bership functions (MFs), while Sigmoidals were used for low
and high sets. The rules built for inference are described
below:

1. if Dk
j is low AND Fk

j is low AND Ak
j is low then λk

j is

low

2. if Dk
j is high OR Fk

j is high AND Ak
j is high then λk

j is

high

3. if Dk
j is medium AND Fk

j is low AND Ak
j is low then λk

j

is medium

4. if Dk
j is low AND Fk

j is medium AND Ak
j is low then λk

j

is medium

5. if Dk
j is low AND Fk

j is low AND Ak
j is medium then λk

j

is medium



Figure 4: The structure of the FIS engine.

Inference is done using a Mamdani [10] type Fuzzy Logic
System, with min and max t-norm and s-norm used for
the AND and OR operators. For every Rule, implication
is done using the Algebraic Product, while Algebraic Sum
is employed for aggregation. Finally, defuzzification is done
using the Centre of Gravity of the output. Figure 5 shows
two examples of normalized inputs for a certain joint of a
sensor and the noise produced, using the above described
FIS.

2.5 Energy function estimates
The Energy function for each candidate joint position, pn

j

(n={1..N}), at time t, is calculated using the following equa-
tion:

Epn
j =

∑
k∋K

{λk
j }−1e−|skj −pn

j | (7)

and is normalized with the sum of Energy Functions of
the whole population of candidate positions:

P (j|λ1
j ...λ

K
j ,pn

j ) ∝
Epn

j∑
n∋N

Epn
j

=

∑
k∋K

{λk
j }−1e−|skj −pn

j |

∑
n∋N

∑
k∋K

{λk
j }−1e−|skj −pn

j |

(8)
After each iteration t, a roulette wheel selection scheme [1]

is followed. Roulette wheel selection is a fitness-proportionate
selection procedure, and has been extensively utilized in Ge-
netic Algorithms, for the selection of parental chromosomes
in future iterations. Every individual candidate position (in
our case), is given a chance to breed future generations of
possible positions, according to a survival probability, de-
rived from P (j|λ1

j ...λ
K
j ,pn

j ). To each individual (candidate
position), a part of an imaginary roulette wheel is attributed.
This part is proportional to the probability an individual
has, of representing joint j; thus, more likely individual po-
sitions occupy more space on the roulette wheel. By spinning
the wheel N times, a new set of possible solutions is gener-
ated and used for iteration t+ 1. Following this procedure,
different candidates are selected multiple times, attributing

(a) (b) (c)

Figure 6: Sequence A: User running on a treadmill
with a lot of occlusions.

(a) (b) (c)

Figure 7: Sequence B: User running on a treadmill
with self occlusions.

them higher probabilities of being selected in future itera-
tions. If there is a particularly fit candidate in the whole
population, it would be expected to be more successful at
producing offspring than a weaker rival. Consequently, can-
didate positions with high probabilities give rise to a higher
number of their future instances with the algorithm, how-
ever, leaving space for less likely positions to be considered.
This way, momentary positions that, in future iterations,
are likely to be assigned higher probability, are kept in the
cycle of possible positions and are only discarded after a
long number of iterations, during which they exhibited con-
tinuously low probabilities of being considered as significant
candidates. The algorithm converges to a few candidates af-
ter a number of iterations, which give the final joint position,
through averaging.

2.6 Adaptive re-initialization of candidate po-
sitions

The algorithm can be re-initialized multiple times, either
at frequent intervals or adaptively. When significant body
rotations occur, a threshold can be used for re-initializing
candidate positions. In this way, candidate positions con-
verge around the proper sensor in a scalable and motion-
dependent manner. Employing the above step increased ac-
curacy, as will be seen in the next Section.

3. EXPERIMENTAL RESULTS
For evaluating the proposed technique, two experiments

with occlusions caused by objects and self occlusions were
conducted: Two sequences (A and B) of a person on a tread-
mill were recorded. In each case, the user was asked to
make rotational movements of about 45 degrees on his left
and right, before starting to run on the treadmill. The dif-
ference between the two sequences is that the treadmill’s
console and handles were removed in the second case. Typi-



(a) (b)

Figure 5: Two examples of FIS input-output for a specifc joint. Rows correspond to the five rules of FIS,
while the first three columns in both (a) and (b) to the three inputs (confidence values). The fourth column
depicts the rule-based and the overall output. In (a) all inputs for the specific sensor have low values in
comparison to the rest of the sensors, thus, resulting to a low noise for the specific Kinect. In contrast, figure
(b) shows an instance where one input being high, results to a significantly noisy output λk

j .

Table 1: Successful selection of sensor for different
re-initialization cycles

t=50 t=100
Sequence A 87.5% 83.3%
Sequence B 91.7% 95%

cal instances are depicted in Fig. 6 and Fig. 7, respectively.
Human motion was recorded with three Kinect sensors, with
the one positioned in front of the user and the other two on
his left and right. All three sensors had equal distances
from the user. Sequence A is more challenging than B,
as both self occlusions and occlusions of the hands, caused
by the treadmill console and handles, take place. Table 1
shows the percentage of convergence to correct estimates of
hands positions, for different numbers of iterations before re-
initializing. Convergence of the majority of the population
of candidate positions, to a Kinect sensor a priori known to
be tracking the corresponding joint correctly, was considered
as a successful one.
Fig. 8 shows the distribution of candidate positions along

the three sensors used for Sequence A, at estimating the
position of left and right hand, for 300 consecutive frames.
As can seen in Fig. 6, the central Kinect sensor has to be
rejected for both hands. However, some candidate positions
coming from the right sensor, when tracking left hand do
survive, although the left sensor is the one that prevails. The
reason is that the hand is only partially occluded from this
sensor and, thus, related information can still reconstruct
motion reliably. For a population equal to N = 2100, the
algorithm converges after about 20-30 iterations.
For increasing the robustness of the system, experiments

were carried out with the algorithm re-launching when the
silhouette is rotated significantly with regards to last initial-
ization. Thus, a threshold of silhouette rotation is defined,
for declaring the possibility that more confidence should be
placed on a new sensor for tracking a joint. Considering a
threshold equal to pi/3, an average of 85 and 103 iterations

resulted for the parts of Sequence A and B, respectively,
when the user was asked to turn right and left. Success
rates have increased, managing to converge to correct po-
sitions, due to the ability of the system to re-launch and
end up to the most appropriate sensor for a specific joint,
whenever large body rotations occur.

In the experiment, candidate positions were set to N =
2100, while a spherical 3D area of radius equal to 100 mil-
limeters was used for initializing candidate positions around
each joint. Standard deviation of all membership functions
of the Fuzzy Inference system was set to σ=0.3.

4. DISCUSSION AND CONCLUSIONS
Estimating human motion in non-intrusive environments

is a crucial component of activity recognition, while it can
act supportively for the transmission of 3D information over
the network, 3D reconstruction of humans, etc. Microsoft’s
kinect sensor comes with a built-in mechanism of motion
estimation, in the form of human skeletons. However, ev-
ery day applications usually require that partial occlusions,
caused either by objects or body posture, are to be taken into
consideration. Moreover, noisy estimates of non-occluded
parts can result in unnatural structures or gestures. The
proposed work described a method for fusing, in a user and
activity-agnostic manner, factors that distinguish among sen-
sors those that deliver reliable information for joint posi-
tion tracking. Future work will concentrate on training user
and activity dependent models. Expressivity and posture
vary among different users and activities and, thus, building
proper models is expected to increase accuracy. Moreover,
the system’s ability to be part of a skeleton-based 3D recon-
struction framework, under heavy movements and occlusions
will be examined, while accurate motion and skeletal infor-
mation is expected to play a key role in virtual environments,
for a realistic mapping of human’s actions on virtual worlds.
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Figure 8: Distribution of candidate positions for (a)
left and (b) right hand along three different sensors.

5. ACKNOWLEDGMENTS
This work was supported by the EU funded project 3DLIVE,

GA 318483.

6. REFERENCES
[1] J. E. Baker. Reducing bias and inefficiency in the

selection algorithm. In Proceedings of the Second
International Conference on Genetic Algorithms on
Genetic algorithms and their application, pages 14–21,
1987.

[2] K. Berger, K. Ruhl, Y. Schroeder, C. Bruemmer,
A. Scholz, and M. A. Magnor. Markerless motion
capture using multiple color-depth sensors. In
Proceedings of Vision, Modeling and Visualization
(VMV) 2011, pages 317–324, 2011.

[3] P. J. Besl and N. D. McKay. A method for registration
of 3-d shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239–256, Feb. 1992.

[4] M. Caon, J. Tscherrig, E. Mugellini, O. A. Khaled,
and Y. Yue. Context -aware 3d gesture interaction
based on multiple kinects. In First International
Conference on Ambient Computing, Applications,
Services and Technologies (AMBIENT), pages 7–12,
2011.

[5] A. A. Chaaraoui, P. Climent-Pérez, and
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