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Abstract
Walking may seem simple, but it actually involves complex control processes. Walking is accomplished
through a series of collaborative operations, including coordinated control, balance control, central
command, and various other physiological mechanisms. When problems arise between these links, it
may cause abnormal gait or motor injury. Gait analysis of athletes can help coaches and medical
personnel evaluate their athletic skills and physical health. Therefore, this article aims to develop an
effective athlete gait analysis method based on �ber optic sensors and computer vision algorithms. Fiber
optic sensors capture subtle changes in athletes' gait by measuring the changes in optical signals in the
�ber optic. The collected gait data includes parameters such as stride length, stride frequency, and gait
phase. Step length refers to the distance traveled during a walk, providing detailed information about an
athlete's gait and helping to evaluate their athletic skills and physical health. Using computer vision
algorithms to process and analyze the collected gait data, accurate gait parameters are obtained for
identifying athletes' walking patterns and identifying abnormal gait.

1 Introduction
Gait analysis is a branch of the discipline that studies the laws of human walking motion (Silva and
Stergiou 2020). The beginning of this �eld can be traced back to the 1990s. It provides objective and
quantitative evaluation of walking function by utilizing a series of parameters such as time, geometry,
mechanics, and electromyography to observe and analyze the kinematics of limb and joint activities
during human walking. Gait analysis can be applied in many �elds, such as sports training, rehabilitation
medicine, medical diagnosis, and structural engineering (Baker et al. 2016). By analyzing motion related
diseases and their association with gait, prediction and later treatment assistance can be made. Gait
recognition technology based on computer vision can make gait analysis faster, more accurate, and more
objective (Manssor et al. 2021). By modeling and analyzing video image data during exercise, the gait
recognition system can extract features such as athlete's posture, contour, speed, and period, achieving
precise recognition of gait (Verlekar et al. 2017). This technology has a wide range of applications in gait
recognition, including gait recognition, disease prediction, rehabilitation plan formulation, etc., and has
become an important technical means in the �eld of gait analysis.

The combination of �ber optic sensors and computer vision algorithms can achieve comprehensive
analysis and evaluation of athlete gait, providing scienti�c basis and guidance for athlete rehabilitation,
health care, and training. Fiber optic sensors can monitor various gait parameters, including stride length,
stride frequency, stride speed, etc., to truly and objectively monitor and collect data on athletes' gait,
which helps to accurately evaluate their gait status and mobility (Bao et al. 2019). Computer vision
algorithms analyze the gait of athletes by extracting relevant data, extracting factors such as gait cycle,
gait speed, arm swing cycle, and other gait features (Feng et al. 2019). They further analyze the gait of
athletes, and extract corresponding feature vectors through algorithm models to achieve automatic
recognition and evaluation of movement gait. Although this method has a shorter analysis time,
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quantitative analysis techniques can provide more convincing data evidence and provide a more accurate
and detailed assessment of athletes' gait status (Kumar et al. 2015).

2 Related work
The literature studied human gait on a gait detection system testing platform, selecting 150 sets of gait
sets as test samples and using the classic DTW (Dynamic Time Warping) algorithm for recognition (Li et
al. 2021). Under the same experimental conditions, by integrating the DTW algorithm with gait
parameters, the recognition rate of human gait can be improved to 86.6%. The classic DTW algorithm
used in literature for gait recognition has achieved relatively high recognition rates (Yadav and Alam
2018). The DTW algorithm is a very commonly used time series similarity comparison algorithm, which
aligns two time series to minimize the distance between them. In gait recognition, the DTW algorithm can
effectively compare the similarity between different gaits and achieve gait recognition. The test results
show that after extracting human gait features, the recognition rate of human gait using the classic DTW
algorithm can reach about 79%. The fusion of DTW algorithm with gait parameters in literature can
further improve the accuracy of gait recognition (Wan et al. 2018). By combining the DTW algorithm with
gait parameters, the similarity of time series and gait feature parameters can be combined to achieve
more accurate recognition of gait. The test results show that under the same experimental conditions,
integrating the DTW algorithm with gait parameters can improve the recognition rate of human gait to
86.6%, which is about 7.6 percentage points higher than the classic DTW algorithm.

The literature adopts Kinect devices as visual sensors and designs a human gait testing system (Supuk
et al. 2014). The system collects bone data from multiple sets of human motion postures, determines the
feature points of the bone data, and combines the clustered data to construct a gait template. Through
this step, the system can more accurately recognize human gait and achieve automation of gait
recognition. The gait testing system is mainly divided into the following steps. Collect bone data of
human motion posture through Kinect devices. Kinect is a device based on a depth camera that can
obtain three-dimensional bone information of the human body and achieve real-time tracking, making it
very suitable for use in human gait testing systems. The system processes bone data to determine the
feature points of the bone data. Generally speaking, key feature points in human gait include joints such
as the head, shoulders, buttocks, knees, and ankles, and determining these feature points is crucial for
gait recognition. Classify human gait through clustering algorithms and combine data. Clustering
algorithms can effectively group data and achieve classi�cation and recognition of gait. Finally, construct
a gait template based on the data from each cluster combination. Gait template is a model used to
describe human gait features, composed of data from multiple clustering combinations, which can help
the system more accurately recognize human gait.

The literature proposes a K-means algorithm based on local spatial information weighting for clustering
and segmentation of plantar images (Ahmed et al. 2020). This algorithm divides the foot image into
different numbers of foot sub region images, and uses a convolutional neural network (CNN) network to
extract the depth features of the sub region images, forming combined features to achieve gait
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recognition. Experiments on static datasets have shown that the improved K-means algorithm can
effectively segment plantar pressure images, and the segmentation results not only meet the
physiological and anatomical structure of the foot, but also fully utilize plantar pressure distribution
information. In the gait recognition experiment, the classi�cation accuracy reached 99%, which proves the
effectiveness of the improved K-means algorithm in achieving static gait recognition on CNN networks in
terms of foot image segmentation compared to traditional methods. The literature produced two gait
event �ow datasets: DVS128-GAIT and EV-CASIA-B (Filtjens et al. 2020). The DVS128-GAIT dataset was
collected in a practical environment, containing gait event �ow data from 18 subjects, each of whom
underwent multiple walks, totaling approximately 600 sets of data; The EV-CASIA-B dataset was
converted from the publicly available gait dataset CASIA-B and contains gait event �ow data for 124
individuals, each with 5 walks, totaling approximately 620 sets of data. In the production of the dataset,
dynamic visual sensors were used and event based data collection methods were adopted.

3 Research on Basic Technology of Fiber Optic Sensors

3.1 Working principle of �ber optic sensors
Based on the characteristics of optical �bers, design reasonable hardware facilities such as optical �bers
and receivers, as well as optimized signal processing algorithms to improve the accuracy and reliability
of optical signal acquisition. As shown in Fig. 1, a re�ective �ber optic displacement sensor is a common
photoelectric sensor that utilizes the principle of light re�ection between media to measure the
displacement of the measured object.

Assuming that the light source �ber and the receiving �ber have the same core diameter 2r, the distance
between the receiving �ber and the re�ecting surface is x, and the center distance between the two �bers
is d. According to the geometric relationship, formula (1) can be obtained:

1

The numerical aperture describes the maximum angle range that a �ber can collect and transmit. The
larger the numerical aperture, the more light the �ber can collect and have a wider range of receiving
angles. In �ber optic transmission, the re�ecting cone is cut by the re�ecting surface, so the size of the
re�ecting cone is closely related to the numerical aperture. According to the Pythagorean theorem, it can
be concluded that:

2

Substituting formula (2) into formula (1) yields formula (3):

θ = arcsinNA

tanθ =
d

2x
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3

3.2 Intensity modulation characteristic function
The intensity modulation function is calculated as follows:

4

After being re�ected by the re�ecting surface, the transmitting �ber is ultimately output at a certain light
intensity. Due to factors such as attenuation of light intensity in �ber optic transmission, the received light
intensity is always lower than the transmitted light intensity. Therefore, in order to evaluate the
performance and measurement accuracy of �ber optic sensors, it is necessary to calculate the optical
power received by the receiving �ber. The �nal output light intensity of the sending �ber can be expressed
as formula (5):

5

When the receiving �ber begins to receive the optical signal emitted by the sensor, the received light
intensity can be approximated by the differential method, and the speci�c expression is as follows:

6

By combining formulas (5) and (6), the expression for the optical power received by the receiving �ber
can be obtained, as shown in formula (7):

7

The expression for the received optical power of the receiving �ber is formula (8):

x =
d

2tan(arcsinNA)

M =
Ps

P0

I (r) = exp [− ]
P0

pω (2d)

r2
2

ω2 (2d)

Ps(r, d) = ∬
Sr

I(r, 2d)dSr

Ps = ∫
ω(2d)

p−r2

e
−

arccos( ) rdr
2(1 − C)P0

πω(2d)2

r2

ω(2d)2 r2 + p2 − r2
2

2pr
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8

The intensity modulation characteristic function M of an optical �ber sensor is related to factors such as
the parameters and arrangement structure of the �ber bundle inside the sensor probe, the distance from
the probe end face to the measured surface, and so on. In general, the distance between the probe end
face and the measured surface is very small, so the intensity modulation characteristic function M can be
expressed in a simple form, i.e. formula (9):

9

Assuming that the re�ecting surface is in an ideal state, that is, the probe end face completely re�ects all
light, therefore, after a complete transmission cycle, the light intensity value that reaches the probe end
face is half of the initial light intensity value. Use formula (10) to represent the light intensity modulation
function M:

10

According to the light intensity modulation characteristic function of a single �ber pair type �ber optic
sensor, the intensity modulation function of a re�ective intensity modulation type �ber optic sensor is
formula (11):

11

3.3 Principle and fabrication of cascaded structure sensors
By calculating the intensity of the interference spectrum using formula (12), information about measuring
physical quantities can be obtained.

12

Ps = ∫
p+r2

ω(2d)

e
−

arccos( ) rdr
2(1 − C)P0

πω(2d)2

r2

ω(2d)2 r2 + p2 − r2
2

2pr

M = = ∫
p+r2

p−r2

e
−

arccos( ) rdr
Ps

P0

2(1 − C)

πω(2d)2

r2

ω(2d)2
r2 + p2 − r2

2

2pr

M = f (r1, r2, NA, p, d)

M = =
M2

M1

f2 (r1, r3, NA, p2, d)

f1 (r1, r2, NA, p1, d)

I = Ico + Icl + 2√IcoIclcos (\upvarphi + \upvarphi0)
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In this MZI, the phase difference between the core mode and the cladding mode can be expressed as
formula (13).

13

The special feature of this interferometer is that complete interference occurs when the phase difference
satis�es the conditions given in formula (14). In this condition, m represents the order of the interference
fringes, and λm is the wavelength of the M-order interference spectrum.

14

By using formula (15), the free spectral range (FSR) of the interferometer can be calculated, where FSR
represents the wavelength difference between the smallest adjacent interference peaks.

15

In sensor structures that utilize hollow silicon tubes to achieve anti resonant re�ection effects, as the
wavelength gradually deviates, more light is limited to the hollow core of the hollow silicon tube, and its
optical loss gradually decreases. When the wavelength is far from the resonant wavelength, light is
limited in the guiding core mode and propagates along the single-mode �ber. The nth resonant
wavelength can be represented by formula (16):

16

The intensity of the transmission spectrum can be expressed by formula (17):

17

Further derivation of formula (16) leads to the temperature sensitivity formula (18) based on the
wavelength shift of the resonant re�ection waveguide, in order to calculate the effect of temperature

ϕ = Δneff 
2πLeff 

λ

λm =
2LeffΔneff

2m + 1

FSR =
λ

2
m

LeΔneff 

λm′ = √n2
1 − n2

air 

2d

m′

TARRW = IAηw′

(1 − nair ⋅ nHST)2(nair + nHST)2

1 + n4
HST − 2n2

HST
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changes on the wavelength of the resonant re�ection waveguide.

18

From Fig. 2, it can be seen that the transmission spectrum of FRSS exhibits a curve similar to a Gaussian
distribution, where the trough is located at the center of the wavelength range and does not affect the
concave trough of ARRW. Therefore, it is convenient to select the desired trough for �ber optic sensing
measurement.

Formula (19) expresses the relationship between wavelength shift and environmental temperature,
refractive index.

19

Among them, changes in temperature and refractive index are considered the main interference factors.
By experimentally measuring and calculating parameters, and calibrating the measurement results, the
accuracy and reliability of the sensor can be improved.

3.4 Performance Veri�cation Results of Fiber Optic Sensors
Experimental operations and results conducted to verify the repeatability and stability of the sensor. The
experimental group repeated measurements 5 times for each RI, and after each RI was held for 6 minutes,
the transmission spectrum was recorded again. Figure 3 shows the position change of the valley
wavelength with the variation of RI. As RI changes, the wavelength positions of valleys A and B also
change. This indicates that under the changing environment of RI, the measurement results of valleys A
and B have a certain sensitivity and stability, which can accurately re�ect environmental changes. The
results of repeated experiments indicate that the inclination angles of ARRW and FRSS remain basically
unchanged in each RI experiment, which means that the proposed sensor has good stability and
repeatability, which can meet the needs of practical applications.

Adjust the driving current of the laser to 60mA and heat it for 5 minutes. Read 1000 values collected by
the optical power meter and draw the measurement results shown in Fig. 4.

The results in Fig. 4 indicate that the light source output by the semiconductor laser is basically stable,
and the selection fully meets the experimental requirements. The experiment used re�ective �ber optic
sensors and a coordinate measuring instrument to measure the height values of different height steps,
and the measurement results are listed in Table 1. By comparing the differences between the three

≈ ⋅ = λmm ⋅ ⋅
∂λm′

∂T

2n1d

m′√n2
1 − n2

air 

∂n1

∂T

n1

n2
1 − n2

air 

∂n1

∂T

ΔλB = kT1 ⋅ ΔT + kD1 ⋅ ΔD

ΔλA = kT2 ⋅ ΔT
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coordinate measurement data and the re�ective �ber optic sensor measurement data, the magnitude of
measurement deviation can be obtained.

Table 1
Height values of steps measured by re�ective �ber optic sensors and coordinate measuring instruments
Step
height
(µm)

Coordinate
measurement data (µm)

Re�ective optical Fiber Sensor
Measurement data (µm)

Measurement
error (µm)

150 150.568 135.924 14.644

100 99.269 94.884 4.385

90 77.719 62.042 15.677

80 76.254 76.892 -0.638

50 44.940 38.844 6.096

4 Gait Analysis Techniques for Athletes Based on Computer Vision
Algorithms

4.1 Overall structure of gait recognition system
As shown in Fig. 5, this article proposes a gait training system based on human bone information, and
designs four modules to implement the system's functions: gait training module, gait recognition module,
gait parameter planning module, and gait evaluation module. In this system, human bone information is
obtained through sensing devices and real-time data is transmitted to the computer. The computer
processes and analyzes bone data to complete the relevant functions of the gait training system.

4.2 Model training and noise reduction methods
Model training includes two parts: improved K-means clustering model training and CNN model training.
The improvement of K-means clustering model training is mainly aimed at improving the performance of
traditional K-means algorithms in high-dimensional data processing. The improved K-means clustering
algorithm converts the two-dimensional matrix of plantar pressure images into a sample set, where each
sample corresponds to a pixel, and the feature vector is composed of the x and y coordinates of the pixel
and the pressure value I of the pixel. Formula (20) can be used to represent the sample set D={P1, P2,...
Pm}, where p represents the feature vector of each pixel.

20

E =
k=l

∑
i=l

∑
p∈Ci

∥p − ui∥
2
2

1

n
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The objective loss function consists of two terms, the �rst being the cross entropy loss function. The goal
of this section is to minimize the classi�cation error of a given training sample. In the �eld of deep
learning, the cross entropy loss function is usually used in conjunction with the softmax function for
multi classi�cation problems. The calculation formula is as follows:

21

In order to reduce the risk of over�tting in the model, weight regularization terms are introduced to limit
the size of weights and biases and avoid excessive �uctuations.

22

By synthesizing formulas (21) and (22), the full formula of the objective loss function is obtained, as
shown in formula (23), where w and b are the weights and biases of the neural network, respectively.

23

24

When calculating the optical �ow of an event in the DVS event stream, it is necessary to �rst remove its
polarity and use the information of the plane where the event is located to calculate its motion speed.

25

4.3 Experimental results of different models and data input
forms
The experimental results in Table 2 indicate that using plantar region partitioning can effectively improve
the accuracy of gait recognition. The manual region division method and SVM classi�er are not as
effective as the method proposed in this article, which uses the improved K-means algorithm for
clustering segmentation and CNN network for feature extraction. When combining manual region

JI(X, W, B) = −
N

∑
i=I

⟨y(i), logŷ(i)⟩
1

N

J2(W, B) =
L

∑
l=l

(∥wl∥
2
F + ∥bl∥

2
2)

J = min (J1(X, W, B) + λIJ2(W, B))

J = min(−
N

∑
i=I

⟨y(i), logŷ(i)⟩ + λl

L

∑
l=I

(∥wl∥
2
F + ∥bl∥

2
2))

1

N

axi + byi + cti + d = 0
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partitioning with CNN networks, some experimental results even exceeded the results of the proposed
method in this study. This indicates that although the manual region division method is di�cult to meet
the evaluation criteria for foot segmentation, combined with the feature extraction ability of CNN
networks, it can also achieve good gait recognition. Therefore, the improved K-means algorithm proposed
in this study combines the advantages of CNN network for feature extraction on the basis of foot image
segmentation to achieve static gait recognition, enhances the representation ability of foot features, and
further improves the accuracy of static gait recognition.

Table 2
Comparative experimental results of static gait recognition for different regions and models on the

test set
classi�cation model Partition method Left foot (%) Right foot (%) Average value (%)

SVM No regional division 79.494 74.751 77.123

Manual 4 zone 83.637 87.098 85.367

Manual 8 zone 89.381 89.071 89.226

ResNet18 Manual 4 zone 97.303 100.010 98.657

Manual 8 zone 96.678 98.572 97.625

(Article) 2 area 90.830 93.283 92.056

(Article) 3 area 99.508 99.748 99.628

(Article) 4 area 99.612 99.310 99.461

5 Conclusion
This article focuses on the walking movement and gait of humans, analyzing their structure, adjustment
mechanism, form, and variation patterns. Fiber optic sensors and computer vision algorithms are used to
analyze the gait of athletes, providing scienti�c reference data and helping them to undergo more
scienti�c training. Walking is the most common form of movement in the human body, and its periodic
and regular movements involve the complex coordination of multiple parts of the body. Normal gait
requires coordination between the central nervous system and the skeletal muscle system. Once there is
damage or disease to the central nervous system or skeletal muscle system, it may lead to abnormal gait.
Therefore, scienti�c analysis and evaluation of gait is very valuable. This article uses �ber optic sensors
and computer vision algorithms to analyze the gait of athletes. Fiber optic sensors can monitor the
movement of athletes' trunk, pelvis, lower limbs, and upper limb joints and muscle groups in real-time,
providing high-precision data. Computer vision algorithms can process and analyze data obtained from
sensors, extract gait related features such as gait period, stride length, stride speed, support phase, and
swing, and quantitatively evaluate gait.
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Figure 1

Geometric Optical Presentation of Re�ective Fiber Optic Displacement Sensor
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Figure 2

Transmission spectra of single FRSS, single ARRW, and cascaded structures
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Figure 3

Changes of Valley A and B in Time Domain with Surrounding RI

Figure 4
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Semiconductor Laser Stability Test Data

Figure 5

Overall Block Diagram of System Scheme


