

Unreal Engine 4
Scripting with C++
Cookbook

Get the best out of your games by scripting them
using UE4

William Sherif

Stephen Whittle

BIRMINGHAM - MUMBAI

Unreal Engine 4 Scripting with C++
Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2016

Production reference: 1171016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-554-9

www.packtpub.com

www.packtpub.com

Credits

Authors
William Sherif

Stephen Whittle

Reviewer
John Doran

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Smeet Thakkar

Content Development Editor
Prashanth G

Technical Editor
Sunith Shetty

Copy Editor
Sonia Mathur

Project Coordinator
Ulhas Kambali

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Jason Monteiro

Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Authors

William Sherif is a C++ programmer with more than eight years of experience in the
programming world, ranging from game programming to web programming. He also worked
as a university course instructor (sessional) for seven years. Additionally, he released several
apps on the iTunes store, including Strum and MARSHALL OF THE ELITE SQUADRON. In the
past, he has won acclaim for delivering course material in an easy-to-understand manner.

Stephen Whittle is a game developer and educator with nearly 10 years of development
experience, most of which has been done using Unreal Engine. He is a community contributor
to the engine, with features or bug fixes included in almost every major version of the engine
since its public release.

I'd like to thank God; my partner, Nichelle; and my family and colleagues
for their constant support while I wrote this book. Epic Games, in particular
Mike Fricker and Alex Paschall, have also provided invaluable assistance.

About the Reviewer

John Doran is a technical game designer who has been creating games for over 10 years.
He has worked on an assortment of games in teams from just himself to over 70 in student,
mod, and professional projects in different roles from game designer to lead UI programmer.
He previously worked at LucasArts on Star Wars 1313 as a game designer. He later graduated
from DigiPen Institute of Technology in Redmond, WA, with a bachelor of science in game
design.

In addition to working at DigiPen Game Studios, John is currently a part of DigiPen's research
and development branch in Singapore. He is also the lead instructor of the DigiPen-Ubisoft
campus game programming program, instructing graduate-level students in an intensive,
advanced game-programming curriculum. He also tutors and assists students on various
subjects, including C#, C++, Unreal, Unity, and game design.

He has authored Unity 5.x Game Development Blueprints, Unreal Engine Game Development
Cookbook, Building an FPS Game in Unity, Unity Game Development Blueprints, Getting
Started with UDK, UDK Game Development, Mastering UDK Game Development, and
coauthored UDK iOS Game Development Beginner's Guide, all by Packt Publishing. You can
find more about him at http://johnpdoran.com.

http://johnpdoran.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www.packtpub.com/mapt

i

Table of Contents
Preface vii
Chapter 1: UE4 Development Tools 1

Introduction 2
Installing Visual Studio 2
Creating and building your first C++ project in Visual Studio 4
Changing the code font and color in Visual Studio 8
Extension – changing the color theme in Visual Studio 11
Formatting your code (Autocomplete settings) in Visual Studio 15
Shortcut keys in Visual Studio 17
Extended mouse usage in Visual Studio 19
UE4 – installation 19
UE4 – first project 21
UE4 – creating your first level 22
UE4 – logging with UE_LOG 23
UE4 – making an FString from FStrings and other variables 25
Project management on GitHub – getting your Source Control 26
Project management on GitHub – using the Issue Tracker 28
Project management on VisualStudio.com – managing the tasks
in your project 31
Project management on VisualStudio.com – constructing user stories
and tasks 34

Chapter 2: Creating Classes 39
Introduction 40
Making a UCLASS – deriving from UObject 40
Creating a user-editable UPROPERTY 45
Accessing a UPROPERTY from Blueprints 47
Specifying a UCLASS as the type of a UPROPERTY 49
Creating a Blueprint from your custom UCLASS 51

ii

Table of Contents

Instantiating UObject-derived classes (ConstructObject < >
and NewObject < >) 53
Destroying UObject-derived classes 55
Creating a USTRUCT 56
Creating a UENUM() 58
Creating a UFUNCTION 58

Chapter 3: Memory Management and Smart Pointers 61
Introduction 62
Unmanaged memory – using malloc()/free() 62
Unmanaged memory – using new/delete 64
Managed memory – using NewObject< > and ConstructObject< > 65
Managed memory – deallocating memory 67
Managed memory – smart pointers (TSharedPtr, TWeakPtr, TAutoPtr)
to track an object 68
Using TScopedPointer to track an object 69
Unreal's garbage collection system and UPROPERTY() 70
Forcing garbage collection 71
Breakpoints and stepping through code 71
Finding bugs and using call stacks 73
Using the Profiler to identify hot spots 74

Chapter 4: Actors and Components 77
Introduction 77
Creating a custom Actor in C++ 78
Instantiating an Actor using SpawnActor 82
Destroying an Actor using Destroy and a Timer 85
Destroying an Actor after a delay using SetLifeSpan 86
Implementing the Actor functionality by composition 87
Loading assets into components using FObjectFinder 89
Implementing the Actor functionality by inheritance 92
Attaching components to create a hierarchy 95
Creating a custom Actor Component 99
Creating a custom Scene Component 102
Creating a custom Primitive Component 106
Creating an InventoryComponent for an RPG 114
Creating an OrbitingMovement Component 125
Creating a building that spawns units 129

Chapter 5: Handling Events and Delegates 137
Handling events implemented via virtual functions 137
Creating a delegate that is bound to a UFUNCTION 140
Unregistering a delegate 143

iii

Table of Contents

Creating a delegate that takes input parameters 144
Passing payload data with a delegate binding 146
Creating a multicast delegate 148
Creating a custom Event 150
Creating a Time of Day handler 153
Creating a respawning pickup for an First Person Shooter 157

Chapter 6: Input and Collision 163
Introduction 163
Axis Mappings – keyboard, mouse and gamepad directional input
for an FPS character 164
Axis Mappings – normalized input 166
Action Mappings – one button responses for an FPS character 168
Adding Axis and Action Mappings from C++ 169
Mouse UI input handling 171
UMG keyboard UI shortcut keys 172
Collision – letting objects pass through one another using Ignore 173
Collision – picking up objects using Overlap 175
Collision – preventing interpenetration using Block 178

Chapter 7: Communication between Classes and Interfaces 181
Introduction 182
Creating a UInterface 182
Implementing a UInterface on an object 184
Checking if a class implements a UInterface 185
Casting to a UInterface implemented in native code 186
Calling native UInterface functions from C++ 189
Inheriting UInterface from one another 194
Overriding UInterface functions in C++ 198
Exposing UInterface methods to Blueprint from a native base class 202
Implementing UInterface functions in Blueprint 205
Creating C++ UInterface function implementations that can be
overridden in Blueprint 208
Calling Blueprint-defined interface functions from C++ 211
Implementing a simple interaction system with UInterfaces 216

Chapter 8: Integrating C++ and the Unreal Editor 225
Introduction 226
Using a class or struct as a blueprint variable 226
Creating classes or structs that can be subclassed in Blueprint 230
Creating functions that can be called in Blueprint 232
Creating events that can be implemented in Blueprint 236
Exposing multi-cast delegates to Blueprint 240

iv

Table of Contents

Creating C++ enums that can be used in Blueprint 249
Editing class properties in different places in the editor 256
Making properties accessible in the Blueprint editor graph 258
Responding to property – changed events from the editor 260
Implementing a native code Construction Script 263
Creating a new editor module 266
Creating new toolbar buttons 270
Creating new menu entries 278
Creating a new editor window 280
Creating a new Asset type 283
Creating custom context menu entries for Assets 287
Creating new console commands 294
Creating a new graph pin visualizer for Blueprint 300
Inspecting types with custom Details panels 306

Chapter 9: User Interfaces – UI and UMG 311
Introduction 311
Drawing using Canvas 312
Adding Slate Widgets to the screen 315
Creating screen size-aware scaling for the UI 319
Displaying and hiding a sheet of UMG elements in-game 325
Attaching function calls to Slate events 328
Use Data Binding with Unreal Motion Graphics 332
Controlling widget appearance with Styles 336
Create a custom SWidget/UWidget 343

Chapter 10: AI for Controlling NPCs 353
Introduction 353
Laying down a Navigation Mesh 354
Following behavior 354
Connecting a Behavior Tree to a Character 356
Constructing Task nodes 360
Using Decorators for conditions 361
Using periodic services 363
Using Composite nodes – Selectors, Sequences, and Simple Parallel 364
AI for a Melee Attacker 365

Chapter 11: Custom Materials and Shaders 367
Introduction 367
Modifying color using a basic Material 369
Modifying position using a Material 373
Shader code via Custom node 374
The Material function 377

v

Table of Contents

Shader parameters and Material instances 379
Glimmer 380
Leaves and Wind 382
Reflectance dependent on the viewing angle 384
Randomness – Perlin noise 385
Shading a Landscape 386

Chapter 12: Working with UE4 APIs 389
Introduction 390
Core/Logging API – Defining a custom log category 391
Core/Logging API – FMessageLog to write messages
to the Message Log 393
Core/Math API – Rotation using FRotator 395
Core/Math API – Rotation using FQuat 396
Core/Math API – Rotation using FRotationMatrix to have one
object face another 398
Landscape API – Landscape generation with Perlin noise 400
Foliage API – Adding trees procedurally to your level 404
Landscape and Foliage API – Map generation using Landscape
and Foliage APIs 406
GameplayAbilities API – Triggering an actor's gameplay abilities
with game controls 408
GameplayAbilities API – Implementing stats with UAttributeSet 413
GameplayAbilities API – Implementing buffs with GameplayEffect 415
GameplayTags API – Attaching GameplayTags to an Actor 417
GameplayTasks API – Making things happen with GameplayTasks 419
HTTP API – Web request 421
HTTP API – Progress bars 424

Index 427

vii

Preface
Unreal Engine 4 (UE4) is a complete suite of game development tools made by game
developers for game developers. With more than 80 practical recipes, this book is a guide
that showcases techniques to use the power of C++ scripting while developing games with
UE4. We will start by adding and editing C++ classes from within the Unreal Editor. Then
we will delve into one of Unreal's primary strengths—the ability for designers to customize
programmer-developed actors and components. This will help you understand the benefits of
when and how to use C++ as a scripting tool. With a blend of task-oriented recipes, this book
will provide actionable information about scripting games with UE4 and manipulating the
game and the development environment using C++. Toward the end of this book, you will be
empowered to become a top-notch developer with UE4 using C++ as the scripting language.

What this book covers
Chapter 1, UE4 Development Tools, outlines basic recipes to get you started with UE4 game
development and the basic tools used to create the code that makes your game.

Chapter 2, Creating Classes, focuses on how to create C++ classes and structs that integrate
well with the UE4 Blueprints Editor. These classes will be graduated versions of regular C++
classes called UCLASSES.

Chapter 3, Memory Management and Smart Pointers, takes the reader through using all three
types of pointer and mentions some common pitfalls regarding automatic garbage collection.
This chapter also shows readers how to use Visual Studio or XCode to interpret crashes or
confirm that the functionality is implemented correctly.

Chapter 4, Actors and Components, deals with creating custom actors and components, what
purpose each serves, and how they work together.

Chapter 5, Handling Events and Delegates, describes delegates, events, and event handlers,
and guides you through creating their own implementations.

Preface

viii

Chapter 6, Input and Collision, shows how to connect user input to C++ functions and how to
handle collisions in C++ from UE4. It will also provide default handling of game events such as
user input and collision, allowing designers to override when necessary, using Blueprint.

Chapter 7, Communication between Classes and Interfaces, shows you how to write your own
UInterfaces, and demonstrates how to take advantage of them within C++ to minimize class
coupling and help keep your code clean.

Chapter 8, Integrating C++ and the Unreal Editor, shows you how to customize the editor by
creating custom Blueprint and animation nodes from scratch. We will also implement custom
editor windows and custom detail panels to inspect types created by users.

Chapter 9, User Interfaces – UI and UMG, demonstrates that displaying feedback to the player
is one of the most important elements within game design, and this will usually involve some
sort of HUD, or at least menus, within your game.

Chapter 10, AI for Controlling NPCs, covers recipes to control your NPC characters with a bit of
Artificial Intelligence (AI).

Chapter 11, Custom Materials and Shaders, talks about creating custom materials and audio
graph nodes used in the UE4 editor.

Chapter 12, Working with UE4 APIs, explains that the application programming interface (API)
is the way in which you, as the programmer, can instruct the engine (and so the PC) on what to
do. Each module has an API for it. To use an API, there is a very important linkage step where
you must list all APIs that you will use in your build in ProjectName.Build.cs file.

What you need for this book
Creating a game is an elaborate task that will require a combination of assets and code. To
create assets and code, we'll need some pretty advanced tools, including art tools, sound
tools, level-editing tools, and code-editing tools. Assets include any visual artwork (2D sprites,
3D models), audio (music and sound effects), and game levels. To perform that, we'll set up
a C++ coding environment to build our UE4 applications. We'll download Visual Studio 2015,
install it, and set it up for UE4 C++ coding. (Visual Studio is an essential package for code
editing when editing the C++ code for your UE4 game.)

Who this book is for
This book is intended for game developers who understand the fundamentals of game design
and C++ and would like to incorporate native code into the games they make with Unreal.
They will be programmers who want to extend the engine or implement systems and actors
that allow designers control and flexibility when building levels.

Preface

ix

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
parameters passed to the UPROPERTY() macro specify a couple of important pieces of
information regarding the variable."

Preface

x

A block of code is set as follows:

#include<stdio.h>

int main()
{
 puts("Welcome to Visual Studio 2015 Community Edition!");
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

int intVar = 5;
float floatVar = 3.7f;
FString fstringVar = "an fstring variable";
UE_LOG(LogTemp, Warning, TEXT("Text, %d %f %s"), intVar,
floatVar, *fstringVar);

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "After you select the tools you'd
like to add on to Visual Studio, click the Next button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

xi

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

 f WinRAR / 7-Zip for Windows

 f Zipeg / iZip / UnRarX for Mac

 f 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Unreal-Engine-4-Scripting-with-CPlusPlus-Cookbook.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Unreal-Engine-4-Scripting-with-CPlusPlus-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Scripting-with-CPlusPlus-Cookbook
https://github.com/PacktPublishing/

Preface

xii

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/UnrealEngine4ScriptingwithC_Cookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/UnrealEngine4ScriptingwithC_Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/UnrealEngine4ScriptingwithC_Cookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

UE4 Development Tools

In this chapter, we will outline basic recipes for getting started in UE4 game development, and
the basic tools that we use for creating the code that makes your game. This will include the
following recipes:

 f Installing Visual Studio

 f Creating and building your first C++ project in Visual Studio

 f Changing the code font and color in Visual Studio

 f Extension – changing the color theme in Visual Studio

 f Formatting your code (Autocomplete settings) in Visual Studio

 f Shortcut keys in Visual Studio

 f Extended mouse usage in Visual Studio

 f UE4 – installation

 f UE4 – first project

 f UE4 – creating your first level

 f UE4 – logging with UE_LOG

 f UE4 – making an FString from FStrings and other variables

 f Project management on GitHub – getting your Source Control

 f Project management on GitHub – using the Issue Tracker

 f Project management on VisualStudio.com – managing the tasks in your project

 f Project management on VisualStudio.com – constructing user stories and tasks

1

UE4 Development Tools

2

Introduction
Creating a game is an elaborate task that will require a combination of assets and code. To
create assets and code, we'll need some pretty advanced tools including art tools, sound
tools, level editing tools, and code editing tools. In this chapter, we'll discuss finding suitable
tools for asset creation and coding. Assets include any visual artwork (2D sprites, 3D models),
audio (music and sound effects), and game levels. Code is the text (usually C++) that instructs
the computer on how to tie these assets together to make a game world and level, and how
to make that game world "play." There are dozens of very good tools for each task; we will
explore a couple of each, and make some recommendations. Game editing tools, especially,
are hefty programs that require a powerful CPU and lots of memory, and very good, ideal
GPUs for good performance.

Protecting your assets and work is also a necessary practice. We'll explore and describe
source control, which is how you back up your work on a remote server. An introduction to
Unreal Engine 4 Programming is also included, along with exploring basic logging functions
and library use. Significant planning is also required to get the tasks done, so we'll use a task-
planner software package to do so.

Installing Visual Studio
Visual Studio is an essential package for code editing when editing the C++ code for your
UE4 game.

Getting ready
We're going to set up a C++ coding environment to build our UE4 applications. We'll download
Visual Studio 2015, install it, and set it up for UE4 C++ coding.

How to do it...
1. Begin by visiting https://www.visualstudio.com/en-us/products/

visual-studio-community-vs.aspx. Click on Download Community 2015.
This downloads the ~200 KB loader/installer.

https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

Chapter 1

3

You can compare editions of Visual Studio at https://www.
visualstudio.com/en-us/products/compare-visual-studio-
2015-products-vs.aspx. The Community Edition of Visual Studio is
fully adequate for UE4 development purposes in this book.

2. Launch the installer, and select the components of Visual Studio 2015 that you want
to add to your PC. Keep in mind that the more features you select, the larger your
installation will be.

The preceding screenshot shows a recommended minimum installation, with
Common Tools for Visual C++ 2015, Git for Windows, and GitHub Extension for
Visual Studio all checked. We will use the Git for Windows features in a later section
in this chapter.

https://www.visualstudio.com/en-us/products/compare-visual-studio-2015-products-vs.aspx
https://www.visualstudio.com/en-us/products/compare-visual-studio-2015-products-vs.aspx
https://www.visualstudio.com/en-us/products/compare-visual-studio-2015-products-vs.aspx

UE4 Development Tools

4

3. After you have selected the tools you'd like to add onto Visual Studio, click the Next
button. The installer tool will download the required components, and continue setup.
Installation should take 20-40 minutes, depending on your option selections and
connection speed.

4. After you download and install Visual Studio 2015, launch it. You will be presented
with a Sign in dialog box.

You can Sign in with your Microsoft account (the one you use to sign into Windows 10), or
Sign up for a new account. After you've signed in or signed up, you will be able to sign into
Visual Studio itself. It may seem odd to sign into a desktop code editing program, but your
sign-in will be used for source control commits to your repositories. On first signing in to Visual
Studio, you can select (one time only) a unique URL for your source code repositories as
hosted on Visualstudio.com.

How it works...
Visual Studio is an excellent editor, and you will have a fantastic time coding within it. In the
next recipe, we'll discuss how to create and compile your own code.

Creating and building your first C++ project
in Visual Studio

In order to compile and run code from Visual Studio, it must be done from within a project.

Chapter 1

5

Getting ready
In this recipe, we will identify how to create an actual executable running program from Visual
Studio. We will do so by creating a project in Visual Studio to host, organize, and compile the
code.

How to do it...
In Visual Studio, each group of code is contained within something called a Project. A Project
is a buildable conglomerate of code and assets that produce either an executable (.exe
runnable) or a library (.lib, or .dll). A group of Projects can be collected together into
something called a Solution. Let's start by constructing a Visual Studio Solution and Project
for a console application, followed by constructing a UE4 sample Project and Solution.

1. Open Visual Studio, and go to File | New | Project...

2. You will see a dialog as follows:

Select Win32 in the pane on the left-hand side. In the right-hand pane, hit Win32
Console Application. Name your project in the lower box, then hit OK.

UE4 Development Tools

6

3. In the next dialog box, we specify the properties of our console application. Read the
first dialog box and simply click Next. Then, in the Application Settings dialog,
choose the Console Application bullet, then under Additional options, choose
Empty project. You can leave Security Development Lifecycle (SDL)
checks unchecked.

4. Once the application wizard completes, you will have created your first project. Both
a Solution and a Project are created. To see these, you need Solution Explorer. To
ensure that Solution Explorer is showing, go to View | Solution Explorer (or press
Ctrl + Alt + L). Solution Explorer is a window that usually appears docked on the
left-hand side or right-hand side of the main editor window as shown in the following
screenshot:

Chapter 1

7

Solution Explorer also displays all the files that are part of the project. Using Solution
Explorer, we will also add a code file into the editor. Right click on your Project
FirstProject, and select Add | New Item…

5. In the next dialog, simply select C++ File (.cpp), and give the file any name you'd like.
I called mine Main.cpp.

6. Once you have added the file, it will appear in Solution Explorer under your
FirstProject's source file filter. As your Project grows, more and more files are
going to be added to your project. You can compile and run your first C++ program
using the following text:
#include<stdio.h>

int main()
{
 puts("Welcome to Visual Studio 2015 Community Edition!");
}

UE4 Development Tools

8

7. Press Ctrl + Shift + B to build the project, then Ctrl + F5 to run the project.

8. Your executable will be created, and you will see a small black window with the
results of your program's run:

How it works...
Building an executable involves translating your C++ code from text language to a binary
file. Running the file runs your game program, which is just the code text that occurs in the
main() function between { and }.

There's more...
Build configurations are styles of build that we should discuss them here. There are at least
two important build configurations you should know about: Debug and Release. The Build
configuration selected is at the top of the editor, just below the toolbar in the default position.

Depending on which configuration you select, different compiler options are used. A Debug
configuration typically includes extensive debug information in the build as well as turning off
optimizations to speed up compilation. Release builds are often optimized (either for size or for
speed), take a bit longer to build, and result in smaller or faster executables. Behavior stepping
through with the debugger is often better in the Debug mode than the Release mode.

Changing the code font and color in Visual
Studio

Customizing the font and color in Visual Studio is not only extremely flexible, you will also find
it very necessary if your monitor resolution is quite high or quite low.

Chapter 1

9

Getting ready
Visual Studio is a highly customizable code editing tool. You might find the default fonts too
small for your screen. You may want to change your code's font size and color. Or you may
want to completely customize the coloration of keywords and the text background colors. The
Fonts and Colors dialog box, which we'll show you how to use in this section, allows you to
completely customize every aspect of the code editor's font and color.

How to do it...
1. From within Visual Studio, go to Tools | Options…

2. Select Environment | Fonts and Colors from the dialog that appears. It will look like
the following screenshot:

UE4 Development Tools

10

3. Play around with the font and font size of Text Editor/Plain Text. Click OK on the
dialog, and see the results in the code-text editor.

Text Editor/Plain Text describes the font and size used for all code text within the regular
code editor. If you change the size of the font, the size changes for any text entered into the
coding window (for all languages, including C, C++, C#, and others).

The color (foreground and background) is completely customizable for each item. Try this for
the Text Editor/Keyword setting (affects all languages), or for C++-specific items, such as
Text Editor/C++ Functions. Click OK, and you will see the changed color of the item reflected
in the code editor.

You may also want to configure the font size of the Output Window—choose Show settings for
=> Output Window as seen in the following screenshot:

The Output Window is the little window at the bottom of the editor that displays build results
and compiler errors.

Chapter 1

11

You can't save-out (export) or bring in (import) your changes to the Fonts
and Colors dialog. But you can use something called the Visual Studio
Theme Editor Extension, learn more refer to Extension – changing the color
theme in Visual Studio to export and import customized color themes.
For this reason, you may want to avoid changing font colors from this dialog.
You must use this dialog to change the font and font-size, however, for any
setting (at the time of writing).

How it works...
The Fonts and Colors dialog simply changes the appearance of code in the text editor as
well as for other windows such as the output window. It is very useful for making your coding
environment more comfortable.

There's more...
Once you have customized your settings, you'll find that you may want to save your customized
Fonts and Colors settings for others to use, or to put into another installation of Visual Studio,
which you have on another machine. Unfortunately, by default, you won't be able to save-out
your customized Fonts and Colors settings. You will need something called the Visual Studio
Theme Editor extension to do so. We will explore this in the next recipe.

See also
 f The Extension – changing the color theme in Visual Studio section describes how to

import and export color themes

Extension – changing the color theme in
Visual Studio

By default, you cannot save the changes you make to the font colors and background settings
that you make in the Fonts and Colors dialog. To fix this issue, Visual Studio 2015 has a
feature called Themes. If you go to Tools | Options | Environment | General, you can change
the theme to one of the three pre-installed stock themes (Light, Blue, and Dark).

UE4 Development Tools

12

A different theme completely changes the look of Visual Studio—from the colors of the title
bars to the background color of the text editor window.

You can also customize the theme of Visual Studio completely, but you'll need an extension
to do so. Extensions are little programs that can be installed into Visual Studio to modify its
behavior.

By default, your customized color settings cannot be saved or reloaded into another Visual
Studio installation without the extension. With the extension, you will also be able to save your
own color theme to share with others. You can also load the color settings made by another
person or by yourself into a fresh copy of Visual Studio.

How to do it...
1. Go to Tools | Extensions and Updates…

2. From the dialog that appears, choose Online in the panel on the left-hand side. Start
typing Theme Editor into the search box at the right. The Visual Studio 2015 Color
Theme Editor dialog will pop up in your search results.

3. Click the small Download button in the top right-hand corner of the entry. Click
through the installation dialog prompts, allowing the plugin to install. After
installation, Visual Studio will prompt you to restart.

Alternatively, visit https://visualstudiogallery.msdn.
microsoft.com/6f4b51b6-5c6b-4a81-9cb5-f2daa560430b
and download/install the extension by double-clicking the .vsix that
comes from your browser.

4. Click Restart Now to ensure the plugin is loaded.

https://visualstudiogallery.msdn.microsoft.com/6f4b51b6-5c6b-4a81-9cb5-f2daa560430b
https://visualstudiogallery.msdn.microsoft.com/6f4b51b6-5c6b-4a81-9cb5-f2daa560430b

Chapter 1

13

5. After restarting, go to Tools | Customize Colors to open the Color Themes editor page.

6. From the Color Themes dialog that appears, click on the little palette-shaped icon
on the upper-right corner of the theme that you want to use as your base or starting
theme (I've clicked on the palette for the Light theme here, as you can see in the
following screenshot).

7. A copy of the theme will appear in the Custom Themes section in the lower part of
the Color Themes window. Click on Edit Theme to modify the theme. When you are
editing the theme, you can change everything from the font text color to the C++
keyword color.

UE4 Development Tools

14

8. The main area you are interested in is the C++ Text Editor section. To gain access to
all the C++ Text Editor options, be sure to select the Show All Elements option at the
top of the Theme Editor window, as shown in the following screenshot:

Be sure to select the Show All Elements option in the Theme Editor
window to show C++-specific text editor settings. Otherwise, you'll be
left with Chrome/GUI type modifications being possible only.

9. Note that, while most of the settings you are interested in will be under Text Editor
| C/C++, some will not have that C++ subheading. For example, the setting for the
main/plain text inside the editor window (for all languages) is under Text Editor |
Plain Text (without the C++ subheading).

10. Select the theme to use from Tools | Options | Environment | General. Any new
themes you have created will appear automatically in the drop-down menu.

How it works...
Once we load the plugin, it integrates into Visual Studio quite nicely. Exporting and uploading
your themes to share with others is quite easy too.

Adding a theme to your Visual Studio installs it as an extension in Tools | Extensions and
Updates…, To remove a theme, simply Uninstall its Extension.

Chapter 1

15

Formatting your code (Autocomplete
settings) in Visual Studio

Code-writing formatting with Visual Studio is a pleasure. In this recipe, we'll discuss how to
control the way Visual Studio lays out the text of your code.

Getting ready
Code has to be formatted correctly. You and your co-programmers will be able to better
understand, grok, and keep your code bug-free if it is consistently formatted. This is why
Visual Studio includes a number of auto-formatting tools inside the editor.

How to do it...
1. Go to Tools | Options | Text Editor | C/C++. This dialog displays a window that

allows you to toggle Automatic brace completion.

Automatic brace completion is the feature where, when you type { , a corresponding
} is automatically typed for you. This feature may irk you if you don't like the text
editor inserting characters for you unexpectedly.

UE4 Development Tools

16

You generally want Auto list members on, as that displays a nice dialog with the
complete names of data members listed for you as soon as you start typing. This
makes it easy to remember variable names, so you don't have to memorize them:

If you press Ctrl + Spacebar inside the code editor at any
time, the auto list pops up.

2. Some more autocomplete behavior options are located under Text Editor | C/C++ |
Formatting:

Autoformat section: Highlight a section of text and select Edit | Advanced | Format
Selection (Ctrl + K, Ctrl + F).

How it works...
The default autocomplete and autoformat behaviors may irk you. You need to converse with
your team on how you want your code formatted (spaces or tab indents, size of indent, and so
on), and then configure your Visual Studio settings accordingly.

Chapter 1

17

Shortcut keys in Visual Studio
Shortcut keys really save you time when coding. Knowing shortcut keys offhand is always good.

Getting ready
There are a number of shortcut keys that will make coding and project navigation much
faster and more efficient for you. In this recipe, we describe how to use some of the common
shortcut keys that will really enhance your coding speed.

How to do it...
The following are some very useful keyboard shortcuts for you to try:

1. Click on one page of the code, then click somewhere else, at least 10 lines of code
away. Now press Ctrl + - [navigate backwards]. Navigation through different pages
of source code (the last place you were at, and the place you are at now) is done by
pressing Ctrl + - and Ctrl + Shift + - respectively.

Warping around in the text editor using Ctrl + -. The cursor will jump back
to the last location it was in that is more than 10 lines of code away, even
if the last location was in a separate file.

Say, for example, you're editing code in one place, and you want to go back to the
place you've just been (or go back to the section in the code you came from). Simply
press Ctrl + -, and that will warp you back to the location in the code you were at last.
To warp forward to the location you were at before you pressed Ctrl + -, press Ctrl +
Shift + -. To warp back, the previous location should be more than 10 lines away, or
in a different file. These correspond to the Forward and Back menu buttons in the
toolbar:

UE4 Development Tools

18

The Back and Forward navigation buttons in the toolbar, which
correspond to the Ctrl + - and Ctrl + Shift + - shortcuts respectively.

2. Press Ctrl + W to highlight a single word.

3. Press and hold Ctrl + Shift + right arrow (or left arrow) (not Shift + right arrow) just to
move to the right and left of the cursor, selecting entire words.

4. Press Ctrl + C to copy text, Ctrl + X to cut text, and Ctrl + V to paste text.

5. Clipboard ring: The clipboard ring is a kind of a reference to the fact that Visual
Studio maintains a stack of the last copy operations. By pressing Ctrl + C, you push
the text that you are copying into an effective stack. Pressing Ctrl + C a second
time on different text pushes that text into the Clipboard Stack. For example, in the
following diagram, we pressed Ctrl + C on the word cyclic first, then Ctrl + C on the
word paste afterwards.

As you know, pressing Ctrl + V pastes the top item in the stack. Pressing Ctrl + Shift
+ V accesses a very long history of all the items ever copied in that session, that is,
items underneath the top item in the stack. After you exhaust the list of items, the
list wraps back to the top item in the stack. This is an odd feature, but you may find it
useful occasionally.

6. Ctrl + M, Ctrl + M collapses a code section.

How it works...
Keyboard shortcuts allow you to speed up work in the code editor by reducing the number of
mouse reaches that you have to perform in a coding session.

Chapter 1

19

Extended mouse usage in Visual Studio
The mouse is a pretty handy tool for selecting text. In this section, we'll highlight how to use
the mouse in an advanced way for quick edits to your code's text.

How to do it...
1. Hold down the Ctrl key while clicking to select an entire word.

2. Hold down the Alt key to select a box of text (Alt + Left Click + Drag).

You can then either cut, copy, or overwrite the box-shaped text area.

How it works...
Mouse clicking alone can be tedious, but with the help of Ctrl + Alt, it becomes quite cool.
Try Alt + Left Click + Drag for selecting a row of text, then typing as well. The characters you
type will be repeated in rows.

UE4 – installation
There are a number of steps to follow to install and configure UE4 properly. In this recipe,
we'll walk through the correct installation and setup of the engine.

Getting ready
UE4 takes up quite a few GB of space, so you should have at least 20 GB or so free for the
installation on the target drive.

UE4 Development Tools

20

How to do it...
1. Visit unrealengine.com and download it. Sign up for an account if required.

2. Run the installer for the Epic Games Launcher Program by double-clicking the
EpicGamesLauncherInstaller-x.x.x-xxx.msi installer. Install it in the
default location.

3. Once the Epic Games Launcher program is installed, open it by double-clicking its
icon on your desktop or in the Start menu.

4. Browse the start page and take a look around. Eventually, you will need to install an
engine. Click on the large orange Install Engine button on the top-left side from the
UE4 tab, as shown in the following image:

5. A pop-up dialog will show the components that can be installed. Select the
components you'd like to install. The recommendation is to begin by installing the first
three components (Core Components, Starter Content, and Templates and Feature
Packs). You can leave out the Editor symbols for debugging component if you will
not be using it.

6. After the engine has installed, the Install Engine button will change to a Launch
Engine button.

Chapter 1

21

How it works...
The Epic Games Launcher is the program that you need to start up the engine itself. It keeps a
copy of all your projects and libraries in the Library tab.

There's more...
Try downloading some of the free library packages in the Library | Vault section. For that,
click the Library item on the left side, and scroll down until you see Vault, underneath My
Projects.

UE4 – first project
Setting up a Project within UE4 takes a number of steps. It is important to get your options
correct so that you can have the setup that you like, so carefully follow this recipe when
constructing your first project.

Each project that you create within UE4 takes up at least 1 GB of space or so, so you should
decide whether you want your created projects on the same target drive, or on an external or
separate HDD.

How to do it...
1. From the Epic Games Launcher, click on the Launch Unreal Engine 4.11.2 button.

Once you are inside the engine, an option to create a new project or load an existing
one will presents itself.

2. Select the New Project tab.

3. Decide whether you will be using C++ to code your project, or Blueprints exclusively.

1. If using Blueprints exclusively, make your selection of a template to use from
the Blueprint tab.

2. If using C++ in addition to Blueprints to construct your project, select the
project template to construct your project based on the C++ tab.

3. If you're not sure what template to base your code on, BASIC Code is an
excellent starting point for any C++ project (or Blank for a Blueprint-exclusive
project).

UE4 Development Tools

22

4. Take a look at the three icons that appear beneath the template listing. There are
three options here to configure:

1. You can choose to target Desktop or Mobile applications.

2. You have an option to alter the quality settings (the picture of a plant with
magic). But you probably don't need to alter these. The quality settings are
reconfigurable under Engine | Engine Scalability Settings anyway.

3. The last option is whether to include Starter Content with the project or not.
You can probably use the Starter Content package in your project. It has
some excellent materials and textures available within it.

If you don't like the Starter Content package, try the packages in the UE4
Marketplace. There is some excellent free content there, including the
GameTextures Material Pack.

5. Select the drive and folder in which you will save your project. Keep in mind that each
project is roughly 1 GB in size, and you will need at least that much space on the
destination drive.

6. Name your project. Preferably name it something unique and specific to what you are
planning on creating.

7. Hit Create. Both the UE4 Editor and Visual Studio 2015 windows should pop up,
enabling you to edit your project.

In the future, keep in mind that you can open the Visual Studio 2015
Solution via one of the two following methods:

 f Via your local file explorer. Navigate to the root of where your project
is stored, and double-click on the ProjectName.sln file.

 f From UE4, click on File | Open Visual Studio.

UE4 – creating your first level
Creating levels in UE4 is easy and facilitated by a great UI all around. In this recipe, we'll
outline basic editor use and describe how to construct your first level once you have your first
project launched.

Getting ready
Complete the previous recipe, UE4 – First Project. Once you have a project constructed, we
can proceed with creating a level.

Chapter 1

23

How to do it…
1. The default level that gets set up when you start a new project will contain some

default geometry and scenery. You don't need to start with this starter stuff, however.
If you don't want to build from it, you can delete it, or create a new level.

2. To create a new level, click File | New Level… and select to create a level with a
background sky (Default), or without a background sky (Empty Level).

If you choose to create a level without a background sky, keep in
mind that you must add a light to it to see the geometry you add to
it effectively.

3. If you loaded the Starter Content on your project's creation (or some other content),
then you can use the Content Browser to pull content into your level. Simply drag and
drop instances of your content from the Content Browser into the level, save, and
launch them.

4. Add some geometry to your level using the Modes panel (Window | Modes). Be sure
to click on the picture of a light bulb and cube to access the placeable geometry. You
can also add lights via the Modes tab by clicking on the Lights subtab on the left-
hand side of the Modes tab.

The Modes panel contains two useful items for level construction:
some sample geometry to add (cubes and spheres and the like) as
well as a panel full of lights. Try these out and experiment to begin
laying out your level.

UE4 – logging with UE_LOG
Logging is extremely important for outputting internal game data. Using log tools lets you print
information into a handy little Output Log window in the UE4 editor.

UE4 Development Tools

24

Getting ready
When coding, we may sometimes want to send some debug information out to the UE log
window. This is possible using the UE_LOG macro. Log messages are an extremely important
and convenient way to keep track of information in your program as you are developing it.

How to do it...
1. In your code, enter a line of code using the form:

UE_LOG(LogTemp, Warning, TEXT("Some warning message"));

2. Turn on the Output Log inside the UE4 editor to see your log messages printed in that
window as your program is running.

How it works...
The UE_LOG macro accepts a minimum of three parameters:

 f The Log category (we used LogTemp here to denote a log message in a temporary
log)

 f The Log level (we used a warning here to denote a log message printed in yellow
warning text)

 f A string for the actual text of the log message itself

Do not forget the TEXT() macro around your log message text! It promotes the enclosed text
to Unicode (it prepends an L) when the compiler is set to run with Unicode on.

Chapter 1

25

UE_LOG also accepts a variable number of arguments, just like printf() from the C
programming language.

int intVar = 5;
float floatVar = 3.7f;
FString fstringVar = "an fstring variable";
UE_LOG(LogTemp, Warning, TEXT("Text, %d %f %s"), intVar,
floatVar, *fstringVar);

There will be an asterisk * just before FString variables when using UE_LOG to dereference
the FString to a regular C-style TCHAR pointer.

TCHAR is usually defined as a variable type where, if Unicode is being
used in the compile, the TCHAR resolves to wchar_t. If Unicode is
off (compiler switch _UNICODE not defined), then TCHAR resolves to
simply char.

Don't forget to clear your log messages after you no longer need them from the source!

UE4 – making an FString from FStrings and
other variables

When coding in UE4, you often want to construct a string from variables. This is pretty easy
using the FString::Printf or FString::Format functions.

Getting ready
For this, you should have an existing project into which you can enter some UE4 C++ code.
Putting variables into a string is possible via printing. It may be counterintuitive to print into a
string, but you can't just concatenate variables together, and hope that they will automatically
convert to string, as in some languages such as JavaScript.

How to do it…
1. Using FString::Printf():

1. Consider the variables you'd like printed into your string.

2. Open and take a look at a reference page of the printf format specifiers,
such as http://en.cppreference.com/w/cpp/io/c/fprintf.

http://en.cppreference.com/w/cpp/io/c/fprintf

UE4 Development Tools

26

3. Try code such as the following:

FString name = "Tim";
int32 mana = 450;
FString string = FString::Printf(TEXT("Name = %s Mana =
%d"), *name, mana);

Notice how the preceding code block uses the format specifiers precisely as the
traditional printf function does. In the preceding example, we used %s to place
a string in the formatted string, and %d to place an integer in the formatted string.
Different format specifiers exist for different types of variables, and you should look
them up on a site such as cppreference.com.

2. Using FString::Format(). Write code in the following form:

FString name = "Tim";
int32 mana = 450;
TArray< FStringFormatArg > args;
args.Add(FStringFormatArg(name));
args.Add(FStringFormatArg(mana));
FString string = FString::Format(TEXT("Name = {0} Mana =
{1}"), args);
UE_LOG(LogTemp, Warning, TEXT("Your string: %s"),
*string);

With FString::Format(), instead of using correct format specifiers, we use simple
integers and a TArray of FStringFormatArg instead. The FstringFormatArg
helps FString::Format() deduce the type of variable to put in the string.

Project management on GitHub – getting
your Source Control

A very important thing to do for your project as you're developing it is to generate a timeline
history as you're working. To do so, you need to back up your source code periodically. A great
tool for doing so is Git. Git allows you to park changes (commits) into a repository online on
a remote server so that your code's development history is documented and preserved on
that remote server. If your local copy gets damaged somehow, you can always recover from
the online backups. This timeline-history of your codebase's development is called Source
Control.

Getting ready
There are a couple of free services that offer online source backups. Some of the free
alternatives for storing your data include:

Chapter 1

27

 f Visualstudio.com: limited/private sharing of your repository

 f github.com: unlimited public sharing of your repositories

Visualstudio.com is great for when you want some privacy for your project for free, while
GitHub is great when you want to share your project with lots of users for free. Visualstudio.
com also offers some very good workboarding and planning features, which we will use later
in this text (GitHub also offers a competing Issue Tracker, which we'll discuss later on as well).

The website you choose depends mostly on how you plan on sharing your code. In this text, we
will use GitHub for source code storage, since we need to share our code with a large number
of users (you!)

How to do it...
1. Sign up for a GitHub account at https://github.com. Sign into your GitHub

account using the Team Explorer menu (View | Team Explorer).

2. Once you have the Team Explorer open, you can sign into your GitHub account using
the button that appears in the Team Explorer window.

3. After you've signed in, you should gain the capability to Clone and Create
repositories. These options will appear right underneath the GitHub menu in the
Team Explorer.

4. From here, we want to create our first repository. Hit the Create button, and name
your repository in the window that comes up.

When creating your project, take care to select the VisualStudio option
from the .gitignore options menu. This will cause Git to ignore the
Visual Studio-specific files that you don't want included in your repository,
such as the Build and Release directories.

5. Now you have a repository! The repository is initialized on GitHub. We just have to put
some code into it.

6. Open up the Epic Games Launcher, and create a project to put into the repository.

7. Open the C++ project in Visual Studio 2015, and right-click on Solution. Select Add
Solution to Source Control from the context menu that appears. The dialog that
appears will ask whether you want to use Git or TFVC.

If you use Git for your source control, then you can host
on either github.com or Visualstudio.com.

https://github.com

UE4 Development Tools

28

8. After you add Git Source Control to the project, take a look at Team Explorer again.
From that window, you should enter a brief message, then click on the Commit
button.

How it works...
Git repositories are important for backing up copies of your code and project files as your
project evolves. There are many commands within Git to browse the project history (try the
Git GUI tool), see what changes you've made since the last commit (git diff), or move
backward and forward through the Git history (git checkout commit-hash-id).

Project management on GitHub – using the
Issue Tracker

Keeping track of you project's progress, features, and bugs is extremely important. The GitHub
Issue Tracker will enable you to do this.

Getting ready
Keeping track of your project's planned features and running issues is important. GitHub's
Issue Tracker can be used to create lists of features you'd like to add to your project as well
as bugs you need to fix at some time in the future.

How to do it...
1. To add an issue to your Issue Tracker, first select the repository that you'd like to edit

by going to the front page of GitHub and selecting the Repositories tab:

Chapter 1

29

2. From your repository's homepage, select the Issues tab under your repository. To add
an issue to track, click the New Issue button in the lower-right corner of the screen,
as seen in the following screenshot:

3. When adding your issue, it is good practice to detail it as much as possible. Including
screenshots and diagrams in the features or bugs you post is highly recommended,
as it documents the issue much better, and parks important information and a good
description into your Issue Tracker. Dragging and dropping images into the text editor
window automatically uploads a copy of the image to GitHub's own cloud server, and
the image will appear inline in the issue, as shown in the following screenshot:

4. The box into which you enter the description of your bug or feature supports
Markdown. Markdown is a simplified HTML-like markup language that lets you quickly
write HTML-like syntax with ease. Examples of some markdown syntax are as follows:
headings
sub-headings
sub-sub-headings
italics, __bold__, ___bold-italics___
[hyperlinks](http://towebsites.com/)

code (indented by 4 spaces), preceded by a blank line

* bulleted
* lists

UE4 Development Tools

30

 - sub bullets
 - sub sub bullets

>quotations

If you want to learn more about Markdown's syntax, check
out https://daringfireball.net/projects/
markdown/syntax.

5. You can further mark the issue as either a bug, enhancement (feature), or any other
label you like. Customizing labels is possible via the Issues | Labels link:

6. From there, you can edit, change the color of, or delete your labels. I deleted all the
stock labels, and replaced the word enhancement with feature, as seen in the
following two screenshots:

https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax

Chapter 1

31

7. Once you've fully customized your labels, your GitHub Issue Tracker is much easier to
navigate. Prioritize issues by tagging with the appropriate labels.

How it works...
GitHub's Issue Tracker is a fantastic way to track bugs and features in your project. Using it not
only organizes your workflow, but also maintains an excellent history of the work done on the
project.

See also
 f You should also check out the Wiki feature, which allows you to document your

source code

Project management on VisualStudio.com –
managing the tasks in your project

High-level management of your project is usually done using a planning tool. GitHub's Issue
Tracker may meet your needs, but if you're looking for more, Microsoft's Visual Studio Team
Services offers planning tools for Scrum and Kanban style programming assignment of tasks
(Features, Bugs, and so on).

Using this tool is a great way to organize your tasks to make sure things get done on time,
and to get used to an industrial-standard workflow. When you sign up for Visual Studio's
Community Edition during setup, your account includes free use of these tools.

UE4 Development Tools

32

How to do it...
In this section, we'll describe how to use the Workboard feature on Visualstudio.com to plan a
few simple tasks.

1. To create your own project Workboard, go to your account at Visualstudio.com. Log in,
and then select the Overview tab. Under Recent projects & teams title, select the
New link.

2. Add a Project name and Description to your project. After you've named your project
(I've named mine Workboards), click on Create project. You will wait a second or
two for project creation to complete, then hit the Navigate to project button in the
next dialog.

Chapter 1

33

3. The next screen that is shown allows you to navigate to the Workboards area. Click
on Manage Work.

4. The Manage Work screen is a Kanban styled (read: prioritized) task queue of things
to do in your project. You can hit the New item button to add new items to your list of
things to do.

As soon as you add something to your to-do list, it is called being part of
your backlog. In Kanban, you're always behind! If you're a manager, you
never want an empty backlog.

UE4 Development Tools

34

How it works…
Each item on your Board's backlog is called a User Story. A User Story is an Agile software
development term, and each User Story is supposed to describe a need of a particular end
user. For example, in the preceding User Story, the need is to have visual graphics, and the
User Story describes that graphics (sprites) must be created to satisfy this user requirement.

User stories will often have a specific format:

As a <someone>, I want <this> so that <advantage>.

For example:

As a <player of the game> I want to <reorganize items>
so that I can <set hotkeys to slots that I desire>.

On the Workboard, you'll have a bunch of user stories. I have placed a few user stories earlier
so we can play with them.

Once your board is filled with user stories, they will all sit in the New vertical column. As you
start work on or make progress on a particular User Story, you can drag it horizontally from
New to Active, then finally to Resolved and Closed when the User Story is complete.

Project management on VisualStudio.com –
constructing user stories and tasks

From the Scrum point of view, a User Story is grouping of tasks that need to be done. A group
of user stories can be collected into a Feature, and a group of Features can be gathered
together into what is called an Epic. VisualStudio.com organizes User Story creation very well
so that it's easy to construct and plan the completion of any particular task (user story). In this
recipe, we'll describe how to assemble and put together user stories.

Chapter 1

35

Getting ready
Every item entered into VisualStudio.com's project management suite should always be a
feature that somebody wants to be in the software. User story creation is a fun, easy, and
exciting way to group together and mete out bunches of tasks to your programmers as work
to be done. Log in to your VisualStudio.com account now, edit one of your projects, and begin
using this feature.

How to do it…
1. From the VisualStudio.com Team Services landing page, navigate to the project into

which you want to enter some new work to be done. All of your Projects can be found
if you click on Browse under the Recent projects & teams heading.

2. Select the project that you want to work with and hit Navigate.

3. Tasks inside Visualstudio.com take place inside of one of the three categories of
super task:

 � User Story

 � Features

 � Epics

UE4 Development Tools

36

User Stories, Features, and Epics are just organizational units for work. An
Epic contains many Features. A Feature contains many User Stories, and a
User Story contains many Tasks.
By default, Epics are not shown. You can display Epics by going to Settings
(the gear icon on the right side of the screen). Then navigate to General |
Backlogs. Under the section that says See only the backlogs your team
manages, select to display all three flavors of Backlog: Epics, Features, and
Stories.

4. There are now four navigation steps to perform before you can enter your first task
(User Story) into the Backlog:

1. From the menu bar at the top, select WORK.

2. Then, in the submenu that appears on the WORK page, select Backlogs.

3. On the sidebar that appears, click on Stories.

4. From the panel on the right-hand side, select Board.

Backlog is the set of User Stories and Tasks that we have yet to
complete. You might think, "Are brand new tasks really entered into a
Backlog?" That's right! You're already behind! The implications of Scrum's
terminology seem to imply "overflowing with work".

5. From the panel on the right-hand side, hit New item, and fill in the text for your new
User Story item.

Chapter 1

37

6. Click on the text of the User Story card, and fill in the fields for Assignee, the
Iteration that it's a part of, Description, tags, and any other fields of the Details
tab that you want to explore.

7. Next we break down the overall User Story into a series of achievable tasks. Hover
over your new User Story item until the ellipsis (three dots…) appears. Click on the
ellipsis, and select + Add Task.

8. List the details of completing the User Story in the series of Tasks.

9. Assign each Task to:

 � An Assignee

 � An Iteration

Simply put, an Iteration is really just a time period. At the end of each
iteration, you should have a deliverable, testable piece of software
completed. Iteration is a time period that refers to producing yet another
version of your amazing software (for testing and possible release).

10. Continue adding Tasks to the project as the project develops features to complete
and bugs to fix.

How it works…
Epics contain a number of Features. Features contain a number of User Stories, and User
Stories contain a number of Tasks and Tests.

All of these items are assignable to a User (an actual human), and to an Iteration (time
period), for both assigning responsibility and scheduling a task. Once these are assigned,
the task should appear in the Queries tab.

UE4 Development Tools

38

Detailed steps to download the code bundle are mentioned in the Preface of
this book. Please have a look.
The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Unreal-Engine-4-Scripting-
with-CPlusPlus-Cookbook. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Unreal-Engine-4-Scripting-with-CPlusPlus-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Scripting-with-CPlusPlus-Cookbook
https://github.com/PacktPublishing/Unreal-Engine-4-Scripting-with-CPlusPlus-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

39

2
Creating Classes

This chapter focuses on how to create C++ classes and structs that integrate well with the
UE4 Blueprints editor. These classes are graduated versions of the regular C++ classes,
and are called UCLASS.

A UCLASS is just a C++ class with a whole lot of UE4 macro decoration
on top. The macros generate additional C++ header code that enables
integration with the UE4 Editor itself.

Using UCLASS is a great practice. The UCLASS macro, if configured correctly, can possibly
make your UCLASS Blueprintable. The advantage of making your UCLASS Blueprintable is
that it can enable your custom C++ objects to have Blueprints visually editable properties
(UPROPERTY) with handy UI widgets such as text fields, sliders, and model selection boxes.
You can also have functions (UFUNCTION) that are callable from within a Blueprints diagram.
Both of these are shown in the following screenshots:

On the left, two UPROPERTY decorated class members (a UTexture reference and an FColor)
show up for editing in a C++ class's Blueprint. On the right, a C++ function GetName marked as
BlueprintCallable UFUNCTION shows up as callable from a Blueprints diagram.

Creating Classes

40

Code generated by the UCLASS macro will be located in a ClassName.
generated.h file, which will be the last #include required in your
UCLASS header file, ClassName.h.

The following are the topics that we will cover in this chapter:

 f Making a UCLASS – deriving from UObject

 f Creating a user-editable UPROPERTY

 f Accessing a UPROPERTY from Blueprints

 f Specifying a UCLASS as the type of a UPROPERTY

 f Creating a Blueprint from your custom UCLASS

 f Instantiating UObject-derived classes (ConstructObject <> and NewObject <>)

 f Destroying UObject-derived classes

 f Creating a USTRUCT

 f Creating a UENUM()

 f Creating a UFUNCTION

You will notice that the sample objects we create in this class, even when
Blueprintable, will not be placed in levels. That is because in order to be
placed in levels, your C++ class must derive from the Actor base class, or
below it. See Chapter 4, Actors and Components for further details.

Introduction
The UE4 code is, typically, very easy to write and manage once you know the patterns. The
code we write to derive from another UCLASS, or to create a UPROPERTY or UFUNCTION, is
very consistent. This chapter provides recipes for common UE4 coding tasks revolving around
basic UCLASS derivation, property and reference declaration, construction, destruction, and
general functionality.

Making a UCLASS – deriving from UObject
When coding with C++, you can have your own code that compiles and runs as native C++
code, with appropriate calls to new and delete to create and destroy your custom objects.
Native C++ code is perfectly acceptable in your UE4 project as long as your new and delete
calls are appropriately paired so that no leaks are present in your C++ code.

Chapter 2

41

You can, however, also declare custom C++ classes, which behave like UE4 classes, by
declaring your custom C++ objects as UCLASS. UCLASS use UE4's Smart Pointers and memory
management routines for allocation and deallocation according to Smart Pointer rules, can be
loaded and read by the UE4 Editor, and can optionally be accessed from Blueprints.

Note that when you use the UCLASS macro, your UCLASS object's creation
and destruction must be completely managed by UE4: you must use
ConstructObject to create an instance of your object (not the C++ native
keyword new), and call UObject::ConditionalBeginDestroy()
to destroy the object (not the C++ native keyword delete). How to create
and destroy your UObject-derivative classes is outlined in the Instantiating
UObject-derived classes (ConstructObject <> and NewObject <>) and
Destroying UObject-derived classes sections later in this chapter.

Getting ready
In this recipe, we will outline how to write a C++ class that uses the UCLASS macro to enable
managed memory allocation and deallocation as well as to permit access from the UE4 Editor
and Blueprints. You need a UE4 project into which you can add new code to use this recipe.

How to do it...
To create your own UObject derivative class, follow the steps below:

1. From your running project, select File | Add C++ Class inside the UE4 Editor.

2. In the Add C++ Class dialog that appears, go to the upper-right side of the window,
and tick the Show All Classes checkbox:

Creating Classes

42

3. Create a UCLASS by choosing to derive from the Object parent class. UObject is
the root of the UE4 hierarchy. You must tick the Show All Classes checkbox in the
upper-right corner of this dialog for the Object class to appear in the list view.

4. Select Object (top of the hierarchy) as the parent class to inherit from, and then
click on Next.

Note that although Object will be written in the dialog box, in your C++
code, the C++ class you will deriving from is actually UObject with a leading
uppercase U. This is the naming convention of UE4:
UCLASS deriving from UObject (on a branch other than Actor) must be
named with a leading U.
UCLASS deriving from Actor must be named with a leading A (Chapter 4,
Actors and Components).
C++ classes (that are not UCLASS) deriving from nothing do not have
a naming convention, but can be named with a leading F (for example,
FAssetData), if preferred.
Direct derivatives of UObject will not be level placeable, even if they contain
visual representation elements such as UStaticMeshes. If you want to
place your object inside a UE4 level, you must at least derive from the Actor
class or beneath it in the inheritance hierarchy. See Chapter 4, Actors and
Components for how to derive from the Actor class for a level-placeable
object.
This chapter's example code will not be placeable in the level, but you can
create and use Blueprints based on the C++ classes that we write in this
chapter in the UE4 Editor.

5. Name your new Object derivative something appropriate for the object type that
you are creating. I call mine UserProfile. This comes off as UUserObject in
the naming of the class in the C++ file that UE4 generates to ensure that the UE4
conventions are followed (C++ UCLASS preceded with a leading U).

6. Go to Visual Studio, and ensure your class file has the following form:
#pragma once

#include "Object.h" // For deriving from UObject
#include "UserProfile.generated.h" // Generated code

// UCLASS macro options sets this C++ class to be
// Blueprintable within the UE4 Editor
UCLASS(Blueprintable)

Chapter 2

43

class CHAPTER2_API UUserProfile : public UObject
{
 GENERATED_BODY()
};

7. Compile and run your project. You can now use your custom UCLASS object inside
Visual Studio, and inside the UE4 Editor. See the following recipes for more details
on what you can do with it.

How it works…
UE4 generates and manages a significant amount of code for your custom UCLASS. This code
is generated as a result of the use of the UE4 macros such as UPROPERTY, UFUNCTION,
and the UCLASS macro itself. The generated code is put into UserProfile.generated.h.
You must #include the UCLASSNAME.generated.h file with the UCLASSNAME.h file for
compilation to succeed. Without including the UCLASSNAME.generated.h file, compilation
would fail. The UCLASSNAME.generated.h file must be included as the last #include in
the list of #include in UCLASSNAME.h:

Right Wrong
#pragma once

#include "Object.h"
#include "Texture.h"
// CORRECT: .generated.h last
file
#include
"UserProfile.generated.h"

#pragma once

#include "Object.h"
#include
"UserProfile.generated.h"
// WRONG: NO INCLUDES AFTER
// .GENERATED.H FILE
#include "Texture.h"

The error that occurs when a UCLASSNAME.generated.h file is not included last in a list of
includes is as follows:

>> #include found after .generated.h file - the .generated.h file
should always be the last #include in a header

Creating Classes

44

There's more…
There are a bunch of keywords that we want to discuss here, which modify the way a UCLASS
behaves. A UCLASS can be marked as follows:

 f Blueprintable: This means that you want to be able to construct a Blueprint
from the Class Viewer inside the UE4 Editor (when you right-click, Create Blueprint
Class… becomes available). Without the Blueprintable keyword, the Create
Blueprint Class… option will not be available for your UCLASS, even if you can
find it from within the Class Viewer and right-click on it:

 f The Create Blueprint Class… option is only available if you specify Blueprintable
in your UCLASS macro definition. If you do not specify Blueprintable, then the
resultant UCLASS will not be Blueprintable.

 f BlueprintType: Using this keyword implies that the UCLASS is usable as
a variable from another Blueprint. You can create Blueprint variables from
the Variables group in the left-hand panel of any Blueprint's EventGraph. If
NotBlueprintType is specified, then you cannot use this Blueprint variable type
as a variable in a Blueprints diagram. Right-clicking the UCLASS name in the Class
Viewer will not show Create Blueprint Class… in its context menu:

Chapter 2

45

Any UCLASS that have BlueprintType specified can be added as variables to your Blueprint
class diagram's list of variables.

You may be unsure whether to declare your C++ class as a UCLASS or not. It is really up to
you. If you like Smart Pointers, you may find that UCLASS not only make for safer code, but
also make the entire code base more coherent and more consistent.

See also
 f To add additional programmable UPROPERTY to the Blueprints diagrams, see the

Creating a user-editable UPROPERTY section below. For details on referring to
instances of your UCLASS using appropriate Smart Pointers, refer to Chapter 3,
Memory Management and Smart Pointers.

Creating a user-editable UPROPERTY
Each UCLASS that you declare can have any number of UPROPERTY declared for it within it.
Each UPROPERTY can be a visually editable field, or some Blueprints accessible data member
of the UCLASS.

There are a number of qualifiers that we can add to each UPROPERTY, which change the
way it behaves from within the UE4 Editor, such as EditAnywhere (screens from which the
UPROPERTY can be changed), and BlueprintReadWrite (specifying that Blueprints can
both read and write the variable at any time in addition to the C++ code being allowed to
do so).

Getting ready
To use this recipe, you should have a C++ project into which you can add C++ code. In
addition, you should have completed the preceding recipe, Making a UCLASS – deriving
from UObject.

How to do it...
1. Add members to your UCLASS declaration as follows:

UCLASS(Blueprintable)
class CHAPTER2_API UUserProfile : public UObject
{
 GENERATED_BODY()
 public:
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 Stats)

Creating Classes

46

 float Armor;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 Stats)
 float HpMax;
};

2. Create a Blueprint of your UObject class derivative, and open the Blueprint in the
UE4 editor by double-clicking it from the object browser.

3. You can now specify values in Blueprints for the default values of these new
UPROPERTY fields:

4. Specify per-instance values by dragging and dropping a few instances of the Blueprint
class into your level, and editing the values on the object placed (by double-clicking
on them).

How it works…
The parameters passed to the UPROPERTY() macro specify a couple of important pieces of
information regarding the variable. In the preceding example, we specified the following:

 f EditAnywhere: This means that the UPROPERTY() macro can be edited either
directly from the Blueprint, or on each instance of the UClass object as placed
in the game level. Contrast this with the following:

 � EditDefaultsOnly: The Blueprint's value is editable, but it is not editable
on a per-instance basis

 � EditInstanceOnly: This would allow editing of the UPROPERTY() macro
in the game-level instances of the UClass object, and not on the base
blueprint itself

Chapter 2

47

 f BlueprintReadWrite: This indicates that the property is both readable and
writeable from Blueprints diagrams. UPROPERTY() with BlueprintReadWrite must
be public members, otherwise compilation will fail. Contrast this with the following:

 � BlueprintReadOnly: The property must be set from C++ and cannot be
changed from Blueprints

 f Category: You should always specify a Category for your UPROPERTY(). The
Category determines which submenu the UPROPERTY() will appear under in the
property editor. All UPROPERTY() specified under Category=Stats will appear in
the same Stats area in the Blueprints editor.

See also
 f A complete UPROPERTY listing is located at https://docs.unrealengine.com/

latest/INT/Programming/UnrealArchitecture/Reference/Properties/
Specifiers/index.html. Give it a browse.

Accessing a UPROPERTY from Blueprints
Accessing a UPROPERTY from Blueprints is fairly simple. The member must be exposed
as a UPROPERTY on the member variable that you want to access from your Blueprints
diagram. You must qualify the UPROPERTY in your macro declaration as being either
BlueprintReadOnly or BlueprintReadWrite to specify whether you want the
variable to be either readable (only) from Blueprints, or even writeable from Blueprints.

You can also use the special value BlueprintDefaultsOnly to indicate that you only
want the default value (before the game starts) to be editable from the Blueprints editor.
BlueprintDefaultsOnly indicates the data member cannot be edited from Blueprints
at runtime.

How to do it...
1. Create some UObject-derivative class, specifying both Blueprintable and

BlueprintType, such as the following:
UCLASS(Blueprintable, BlueprintType)
class CHAPTER2_API UUserProfile : public UObject
{
 GENERATED_BODY()
 public:
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 Stats)
 FString Name;
};

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html

Creating Classes

48

The BlueprintType declaration in the UCLASS macro is required to use the
UCLASS as a type within a Blueprints diagram.

2. Within the UE4 Editor, derive a Blueprint class from the C++ class, as shown in
Creating a Blueprint from your custom UCLASS.

3. Create an instance of your Blueprint-derived class in the UE4 Editor by dragging an
instance from the Content Browser into the main game world area. It should appear
as a round white sphere in the game world unless you've specified a model mesh
for it.

4. In a Blueprints diagram which allows function calls (such as the Level Blueprint,
accessible via Blueprints | Open Level Blueprint), try printing the Name property
of your Warrior instance, as seen in the following screenshot:

Navigating Blueprints diagrams is easy. Right-click and drag to pan a
Blueprints diagram; Alt + Right-Click + Drag to zoom.

How it works…
UPROPERTY are automatically written Get/Set methods for UE4 classes. They must not
be declared as private variables within the UCLASS, however. If they are not declared
as public or protected members, you will get a compiler error of the form:

>> BlueprintReadWrite should not be used on private members

Chapter 2

49

Specifying a UCLASS as the type of a
UPROPERTY

So, you've constructed some custom UCLASS intended for use inside UE4. But how do you
instantiate them? Objects in UE4 are reference-counted and memory-managed, so you should
not allocate them directly using the C++ keyword new. Instead, you'll have to use a function
called ConstructObject to instantiate your UObject derivative. ConstructObject doesn't
just take the C++ class of the object you are creating, it also requires a Blueprint class derivative
of the C++ class (a UClass* reference). A UClass* reference is just a pointer to a Blueprint.

How do we instantiate an instance of a particular Blueprint from C++ code? C++ code does
not, and should not, know concrete UCLASS names, since these names are created and
edited in the UE4 Editor, which you can only access after compilation. We need a way to
somehow hand back the Blueprint class name to instantiate to the C++ code.

The way we do this is by having the UE4 programmer select the UClass that the C++ code
is to use from a simple drop-down menu listing all the Blueprints available (derived from
a particular C++ class) inside the UE4 Editor. To do this, we simply have to provide a user-
editable UPROPERTY with a TSubclassOf<C++ClassName>-typed variable. Alternatively,
you can use FStringClassReference to achieve the same objective.

This makes selecting the UCLASS in the C++ code is exactly like selecting a texture to use.
UCLASS should be considered as resources to the C++ code, and their names should never
be hardcoded into the code base.

Getting ready
In your UE4 code, you're often going to need to refer to different UCLASS in the project.
For example, say you need to know the UCLASS of the player object so that you can use
SpawnObject in your code on it. Specifying a UCLASS from C++ code is extremely awkward,
because the C++ code is not supposed to know about the concrete instances of the derived
UCLASS that were created in the Blueprints editor at all. Just as we don't want to bake specific
asset names into the C++ code, we don't want to hardcode derived Blueprints class names
into the C++ code.

So, we use a C++ variable (for example, UClassOfPlayer), and select that from a
Blueprints dialog in the UE4 editor. You can do so using a TSubclassOf member or an
FStringClassReference member, as shown in the following screenshot:

Creating Classes

50

How to do it...
1. Navigate to the C++ class that you'd like to add the UCLASS reference member to.

For example, decking out a class derivative with the UCLASS of the player is fairly easy.

2. From inside a UCLASS, use code of the following form to declare a UPROPERTY
that allows selection of a UClass (Blueprint class) that derives from UObject
in the hierarchy:
UCLASS()
class CHAPTER2_API UUserProfile : public UObject
{
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 Unit)
 TSubclassOf<UObject> UClassOfPlayer; // Displays any
 UClasses
 // deriving from UObject in a dropdown menu in Blueprints

 // Displays string names of UCLASSes that derive from
 // the GameMode C++ base class
 UPROPERTY(EditAnywhere, meta=(MetaClass="GameMode"),
 Category = Unit)
 FStringClassReference UClassGameMode;
};

3. Blueprint the C++ class, and then open that Blueprint. Click on the drop-down menu
beside your UClassOfPlayer menu.

4. Select the appropriate UClassOfPlayer member from the drop-down menu of the
listed UClass.

How it works…

TSubclassOf
The TSubclassOf< > member will allow you to specify a UClass name using a drop-
down menu inside the UE4 editor when editing any Blueprints that have TSubclassOf< >
members.

FStringClassReference
The MetaClass tag refers to the base C++ class from which you expect the UClassName
to derive. This limits the drop-down menu's contents to only the Blueprints derived from that
C++ class. You can leave the MetaClass tag out if you wish to display all the Blueprints in
the project.

Chapter 2

51

Creating a Blueprint from your custom
UCLASS

Blueprinting is just the process of deriving a Blueprint class for your C++ object. Creating
Blueprint-derived classes from your UE4 objects allows you to edit the custom UPROPERTY
visually inside the editor. This avoids hardcoding any resources into your C++ code. In addition,
in order for your C++ class to be placeable within the level, it must be Blueprinted first. But this
is only possible if the C++ class underlying the Blueprint is an Actor class-derivative.

There is a way to load resources (such as textures) using
FStringAssetReferences and StaticLoadObject. These
pathways to loading resources (by hardcoding path strings into your
C++ code) are generally discouraged, however. Providing an editable
value in a UPROPERTY(), and loading from a proper concretely typed
asset reference is a much better practice.

Getting ready
You need to have a constructed UCLASS that you'd like to derive a Blueprint class from (see
the Making a UCLASS – deriving from UObject section earlier in this chapter) in order to follow
this recipe. You must have also marked your UCLASS as Blueprintable in the UCLASS
macro for Blueprinting to be possible inside the engine.

Any UObject-derived class with the meta keyword Blueprintable
in the UCLASS macro declaration will be Blueprintable.

How to do it…
1. To Blueprint your UserProfile class, first ensure that UCLASS has the

Blueprintable tag in the UCLASS macro. This should look as follows:
UCLASS(Blueprintable)
class CHAPTER2_API UUserProfile : public UObject

2. Compile and run your code.

Creating Classes

52

3. Find the UserProfile C++ class in the Class Viewer (Window | Developer Tools |
Class Viewer). Since the previously created UCLASS does not derive from Actor, to
find your custom UCLASS, you must turn off Filters | Actors Only in the Class Viewer
(which is checked by default):

Turn off the Actors Only check mark to display all the classes in the Class Viewer.
If you don't do this, then your custom C++ class may not show!

Keep in mind that you can use the small search box inside the Class
Viewer to easily find the UserProfile class by starting to type it in:

4. Find your UserProfile class in the Class Viewer, right-click on it, and create a
Blueprint from it by selecting Create Blueprint…

5. Name your Blueprint. Some prefer to prefix the Blueprint class name with BP_.
You may choose to follow this convention or not, just be sure to be consistent.

6. Double-click on your new Blueprint as it appears in the Content Browser, and take a
look at it. You will be able to edit the Name and Email fields for each UserProfile
Blueprint instance you create.

How it works…
Any C++ class you create that has the Blueprintable tag in its UCLASS macro can be
Blueprinted within the UE4 editor. A Blueprint allows you to customize properties on the
C++ class in the visual GUI interface of UE4.

Chapter 2

53

Instantiating UObject-derived classes
(ConstructObject < > and NewObject < >)

Creating class instances in C++ is traditionally done using the keyword new. However, UE4
actually creates instances of its classes internally, and requires you to call special factory
functions to produce copies of any UCLASS that you want to instantiate. You produce
instances of the UE4 Blueprints classes, not the C++ class alone. When you create UObject-
derived classes, you will need to instantiate them using special UE4 Engine functions.

The factory method allows UE4 to exercise some memory management on the object,
controlling what happens to the object when it is deleted. This method allows UE4 to track all
references to an object so that on object destruction, all references to the object can be easily
unlinked. This ensures that no dangling pointers with references to invalidated memory exist
in the program.

Getting ready
Instantiating UObject-derived classes that are not AActor class derivatives does not
use UWorld::SpawnActor< >. Instead, we have to use special global functions named
ConstructObject< >, or NewObject< >. Note that you should not use the bare C++
keyword new to allocate new instances of your UE4 UObject class derivatives.

You will need at least two pieces of information to properly instantiate your UCLASS instance:

 f A C++ typed UClass reference to the class type that you would like to instantiate
(Blueprint class)

 f The original C++ base class from which the Blueprint class derives

How to do it...
1. In a globally accessible object (like your GameMode object), add a TSubclassOf<

YourC++ClassName > UPROPERTY() to specify and supply the UCLASS name to
your C++ code. For example, we add the following two lines to our GameMode object:
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
UClassNames)
TSubclassOf<UUserProfile> UPBlueprintClassName;

2. Enter the UE4 editor, and select your UClass name from the drop-down menu so that
you can see what it does. Save, and exit the editor.

Creating Classes

54

3. In your C++ code, find the section where you want to instantiate the UCLASS instance.

4. Instantiate the object using ConstructObject< > with the following formula:
ObjectType* object = ConstructObject< ObjectType >(
UClassReference);

For example, using the UserProfile object that we specified in the last recipe, we would get
code like this:

// Get the GameMode object, which has a reference to
// the UClass name that we should instantiate:
AChapter2GameMode *gm = Cast<AChapter2GameMode>(
GetWorld()->GetAuthGameMode());
if(gm)
{
 UUserProfile* object = ConstructObject<UUserProfile>(
 gm->UPBlueprintClassName);
}

If you prefer, you can also use the NewObject function as follows:
UProfile* object = NewObject<UProfile>(
GetTransientPackage(),
uclassReference);

How it works…
Instantiating a UObject class using ConstructObject or NewObject is simple.
NewObject and ConstructObject do nearly the same thing: instantiate an object
of Blueprint class type, and return a C++ pointer of the correct type.

Unfortunately, NewObject has a nasty first parameter which requires you to pass
GetTransientPackage() with each call. ConstructObject does not require this
parameter with each call. In addition, ConstructObject provides you with more
construction options.

Do not use the keyword new when constructing your UE4 UObject derivative! It will not be
properly memory-managed.

There's more…
NewObject and ConstructObject are what the OOP world calls factories. You ask the
factory to make you the object—you don't go about constructing it by yourself. Using a factory
pattern enables the engine to easily track objects as they are created.

Chapter 2

55

Destroying UObject-derived classes
Removing any UObject derivative is simple in UE4. When you are ready to delete your
UObject-derived class, we will simply call a single function (ConditionalBeginDestroy())
on it to begin teardown. We do not use the native C++ delete command on UObject
derivatives. We show this in the following recipe.

Getting ready
You need to call ConditionalBeginDestroy() on any unused UObject-derived classes
so that they get removed from memory. Do not call delete on a UObject-derived class to
recoup the system memory. You must use the internal engine-provided memory management
functions instead. The way to do this is shown next.

How to do it...
1. Call objectInstance->ConditionalBeginDestroy() on your object instance.

2. Null all your references to objectInstance in your client code, and do not use
objectInstance again after ConditionalBeginDestroy() has been called
on it.

How it works…
The ConditionalBeginDestroy() function begins the destruction process by removing
all internal engine linkages to it. This marks the object for destruction as far as the engine is
concerned. The object is then destroyed some time later by destroying its internal properties,
followed by actual destruction of the object.

After ConditionalBeginDestroy() has been called on an object, your (client) code must
consider the object to be destroyed, and must no longer use it.

Actual memory recovery happens some time later than when
ConditionalBeginDestroy() has been called on an object. There is a garbage collection
routine that finishes clearing the memory of objects that are no longer referenced by the game
program at fixed time intervals. The time interval between garbage collector calls is listed in
C:\Program Files (x86)\Epic Games\4.11\Engine\Config \BaseEngine.ini,
and defaults to one collection every 60 seconds:

gc.TimeBetweenPurgingPendingKillObjects=60

Creating Classes

56

If memory seems low after several ConditionalBeginDestroy()
calls, you can trigger memory cleanup by calling GetWorld()-
>ForceGarbageCollection(true) to force an internal memory
cleanup.

Usually, you do not need to worry about garbage collection or the interval unless you urgently
need memory cleared. Do not call garbage collection routines too often, as this may cause
unnecessary lag in the game.

Creating a USTRUCT
You may want to construct a Blueprints editable property in UE4 that contains multiple
members. The FColoredTexture struct that we will create in this chapter will allow you to
group together a texture and its color inside the same structure for inclusion and specification
in any other UObject derivative, Blueprintable class:

The FColoredTexture structure does have the visual within Blueprints appearance as
shown in the figure above.

This is for good organization and convenience of your other UCLASS UPROPERTIES().
You may want to construct a C++ structure in your game using the keyword struct.

Getting ready
A UObject is the base class of all UE4 class objects, while an FStruct is just any plain old
C++ style struct. All objects that use the automatic memory management features within the
engine must derive from this class.

If you' recall from the C++ language, the only difference between a C++ class
and a C++ struct is that C++ classes have default private members, while
structs default to public members. In languages like C#, this isn't the case.
In C#, a struct is value-typed, while a class is reference-typed.

Chapter 2

57

How to do it...
We'll create a structure FColoredTexture in C++ code to contain a texture and a
modulating color:

1. Create a file ColoredTexture.h in your project folder (not FColoredTexture).

2. ColoredTexture.h contains the following code:
#pragma once

#include "Chapter2.h"
#include "ColoredTexture.generated.h"

USTRUCT()
struct CHAPTER2_API FColoredTexture
{
 GENERATED_USTRUCT_BODY()
 public:
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 HUD)
 UTexture* Texture;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 HUD)
 FLinearColor Color;
};

3. Use ColoredTexture.h as a UPROPERTY() in some Blueprintable UCLASS(),
using a UPROPERTY() declaration like this:
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = HUD
)
FColoredTexture* Texture;

How it works...
The UPROPERTY() specified for the FColoredTexture will show up in the editor as editable
fields when included as UPROPERTY() fields inside another class, as shown in step 3.

There's more…
The main reason for making a struct a USTRUCT() instead of just a plain old C++ struct is
to interface with the UE4 Engine functionality. You can use plain C++ code (without creating
USTRUCT() objects) for quick small structures that don't ask the engine to use them directly.

Creating Classes

58

Creating a UENUM()
C++ enum are very useful in typical C++ code. UE4 has a custom type of enumeration called
UENUM(), which allows you to create an enum that will show up in a drop-down menu inside a
Blueprint that you are editing.

How to do it...
1. Go to the header file that will use the UENUM() you are specifying, or create a

file EnumName.h.

2. Use code of the form:
UENUM()
enum Status
{
 Stopped UMETA(DisplayName = "Stopped"),
 Moving UMETA(DisplayName = "Moving"),
 Attacking UMETA(DisplayName = "Attacking"),
};

3. Use your UENUM() in a UCLASS() as follows:
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
Status)
TEnumAsByte<Status> status;

How it works…
UENUM() show up nicely in the code editor as drop-down menus in the Blueprints editor from
which you can only select one of a few values.

Creating a UFUNCTION
UFUNCTION() are useful because they are C++ functions that can be called from both
your C++ client code as well as Blueprints diagrams. Any C++ function can be marked
as a UFUNCTION().

Chapter 2

59

How to do it...
1. Construct a UClass with a member function that you'd like to expose to Blueprints.

Decorate that member function with UFUNCTION(BlueprintCallable,
Category=SomeCategory) to make it callable from Blueprints. For example, the
following is the Warrior class again:
// Warrior.h
class WRYV_API AWarrior : public AActor
{
 GENERATED_BODY()
 public:
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 Properties)
 FString Name;
 UFUNCTION(BlueprintCallable, Category = Properties)
 FString ToString();
};

// Warrior.cpp
FString UProfile::ToString()
{
 return FString::Printf("An instance of UProfile: %s",
 *Name);
}

2. Create an instance of your Warrior class by dragging an instance on to your
game world.

3. From Blueprints, call the ToString() function on that Warrior instance by clicking
on your Warrior instance. Then, in a Blueprints diagram, type in ToString(). It
should look like in the following screenshot:

Creating Classes

60

In order to call a function on an instance, the instance must be selected in
the World Outliner when you start to type into the autocomplete menu in the
Blueprints diagram, as shown in the following screenshot:

How it works…
UFUNCTION() are really C++ functions, but with additional metadata that make them
accessible to Blueprints.

61

Memory Management
and Smart Pointers

In this chapter, we are going to cover the following topics:

 f Unmanaged memory – using malloc()/free()

 f Unmanaged memory – using new/delete

 f Managed memory – using NewObject< > and ConstructObject< >

 f Managed memory – deallocating memory

 f Managed memory – smart pointers (TSharedPtr, TWeakPtr, TAutoPtr) to track
an object

 f Using TScopedPointer to track an object

 f Unreal's garbage collection system and UPROPERTY()

 f Forcing garbage collection

 f Breakpoints and stepping through code

 f Finding bugs and using call stacks

 f Using the Profiler to identify hot spots

3

Memory Management and Smart Pointers

62

Introduction
Memory management is always one of the most important things to get right in your computer
program to ensure stability and good, bug-free operation of your code. A dangling pointer
(pointer referring to something that has been removed from memory) is an example of a bug
that is hard to track if it occurs.

In any computer program, memory management is extremely important. UE4's UObject
reference counting system is the default way that memory is managed for Actors and
UObject derivatives. This is the default way that your memory will be managed within your
UE4 program.

If you write custom C++ classes of your own, which do not derive from UObject, you may
find the TSharedPtr / TWeakPtr reference counted classes useful. These classes provide
reference counting and automatic deletion for 0 reference objects.

This chapter provides recipes for memory management within UE4.

Unmanaged memory – using malloc()/free()
The basic way to allocate memory for your computer program in C (and C++) is by using
malloc(). malloc() designates a block of the computer system's memory for your
program's use. Once your program is using a segment of memory, no other program can use
or access that segment of memory. An attempt to access a segment of memory not allocated
to your program will generate a "segmentation fault", and represents an illegal operation on
most systems.

How to do it...
Let's look at an example code that allocates a pointer variable i, then assigns memory to it
using malloc(). We allocate a single integer behind an int* pointer. After allocation, we
store a value inside int, using the dereferencing operator *:

// CREATING AND ALLOCATING MEMORY FOR AN INT VARIABLE i
int* i; // Declare a pointer variable i

Chapter 3

63

i = (int*)malloc(sizeof(int)); // Allocates system memory
*i = 0; // Assign the value 0 into variable i
printf("i contains %d", *i); // Use the variable i, ensuring to
// use dereferencing operator * during use
// RELEASING MEMORY OCCUPIED BY i TO THE SYSTEM
free(i); // When we're done using i, we free the memory
// allocated for it back to the system.
i = 0;// Set the pointer's reference to address 0

How it works…
The preceding code does what is shown in the diagram that follows:

1. The first line creates an int* pointer variable i, which starts as a dangling pointer
referring to a segment of memory that probably won't be valid for your program to
reference.

2. In the second diagram, we use a malloc() call to initialize the variable i to point
to a segment of memory precisely the size of an int variable, which will be valid for
your program to refer to.

3. We then initialize the contents of that memory segment to the value 0 using the
command *i = 0;.

Note the difference between assignment to a pointer variable (i
=), which tells the pointer what memory address to refer to, and
assignment to what is inside the memory address that the pointer
variable refers to (*i =).

Memory Management and Smart Pointers

64

When the memory in the variable i needs to be released back to the system, we do so using
a free() deallocation call, as shown in the following diagram. i is then assigned to point to
memory address 0, (diagrammed by the electrical grounding symbol reference).

The reason we set the variable i to point to the NULL reference is to make it clear that the
variable i does not refer to a valid segment of memory.

Unmanaged memory – using new/delete
The new operator is almost the same as a malloc call, except that it invokes a constructor
call on the object created immediately after the memory is allocated. Objects allocated with
the operator new should be deallocated with the operator delete (and not free()).

Getting ready
In C++, use of malloc() was replaced, as best practice, by use of the operator new. The
main difference between the functionality of malloc() and the operator new is that new will
call the constructor on object types after memory allocation.

malloc new

Allocates a zone of contiguous space for use. Allocates a zone of contiguous space for
use.

Calls constructor as object type used as
an argument to the operator new.

How to do it...
In the following code, we declare a simple Object class, then construct an instance of it
using the operator new:

class Object
{
 Object()
 {
 puts("Object constructed");

Chapter 3

65

 }
 ~Object()
 {
 puts("Object destructed");
 }
};
Object* object= new Object(); // Invokes ctor
delete object; // Invokes dtor
object = 0; // resets object to a null pointer

How it works…
The operator new works by allocating space just as malloc() does. If the type used with the
operator new is an object type, the constructor is invoked automatically with the use of the
keyword new, whereas the constructor is never invoked with the use of malloc().

There's more…
You should avoid using naked heap allocations with the keyword new (or malloc for that
matter). Managed memory is preferred within the engine so that all memory use is tracked
and clean. If you allocate a UObject derivative, you definitely need to use NewObject< > or
ConstructObject< > (outlined in subsequent recipes).

Managed memory – using NewObject< > and
ConstructObject< >

Managed memory refers to memory that is allocated and deallocated by some programmed
subsystem above the new, delete, malloc, and free calls in C++. These subsystems are
commonly created so that the programmer does not forget to release memory after allocating
it. Unreleased, occupied, but unused memory chunks are called memory leaks. For example:

for(int i = 0; i < 100; i++)
int** leak = new int[500]; // generates memory leaks galore!

In the preceding example, the memory allocated is not referenceable by any variable! So you
can neither use the allocated memory after the for loop, nor can you free it. If your program
allocates all available system memory, then what will happen is that your system will run out
of memory entirely, and your OS will flag your program and close it for using up too much
memory.

Memory Management and Smart Pointers

66

Memory management prevents forgetting to release memory. In memory-managed programs,
it is commonly remembered by objects that are dynamically allocated the number of pointers
referencing the object. When there are zero pointers referencing the object, it is either
automatically deleted immediately, or flagged for deletion on the next run of the garbage
collector.

Use of managed memory is automatic within UE4. Any allocation of an object to be
used within the engine must be done using NewObject< >() or SpawnActor< >().
The release of objects is done by removing the reference to the object, then occasionally
calling the garbage cleanup routine (listed further in this chapter).

Getting ready
When you need to construct any UObject derivative that is not a derivative of the Actor
class, you should always use NewObject< >. SpawnActor< > should be used only when
the object is an Actor or its derivative.

How to do it...
Say we are trying to construct an object of type UAction, which itself derives from UObject.
For example, the following class:

UCLASS(BlueprintType, Blueprintable, meta=(ShortTooltip="Base
class for any Action type"))
Class WRYV_API UAction : public UObject
{
 GENERATED_UCLASS_BODY()
 public:
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category=Properties)
 FString Text;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category=Properties)
 FKey ShortcutKey;
};

To construct an instance of the UAction class, we'd do the following:

UAction* action = NewObject<UAction>(GetTransientPackage(),
UAction::StaticClass() /* RF_* flags */);

How it works…
Here, UAction::StaticClass() gets you a base UClass* for the UAction object. The
first argument to NewObject< > is GetTransientPackage(), which simply retrieves the
transient package for the game. A package (UPackage) in UE4 is just a data conglomerate.
Here we use the Transient Package to store our heap-allocated data. You could also use
UPROPERTY() TSubclassOf<AActor> from Blueprints to select a UClass instance.

Chapter 3

67

The third argument (optional) is a combination of parameters that indicate how UObject is
treated by the memory management system.

There's more…
There is another function very similar to NewObject< > called ConstructObject< >.
ConstructObject< > provides more parameters in construction, and you may find it useful
if you need to specify these parameters. Otherwise, NewObject works just fine.

See also
 f You may also want to see the documentation for RF_* flags at https://docs.

unrealengine.com/latest/INT/Programming/UnrealArchitecture/
Objects/Creation/index.html#objectflags

Managed memory – deallocating memory
UObjects are reference-counted and garbage-collected when there are no more references
to the UObject instance. Memory allocated on a UObject class derivative using
ConstructObject<> or NewObject< > can also be deallocated manually (before the
reference count drops to 0) by calling the UObject::ConditionalBeginDestroy()
member function.

Getting ready
You'd only do this if you were sure you no longer wanted UObject or the UObject class
derivative instance in memory. Use the ConditionalBeginDestroy() function to release
memory.

How to do it...
The following code demonstrates the deallocation of a UObject class:

UObject *o = NewObject< UObject >(...);
o->ConditionalBeginDestroy();

How it works…
The command ConditionalBeginDestroy() begins the deallocation process, calling the
BeginDestroy() and FinishDestroy() overrideable functions.

https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Objects/Creation/index.html#objectflags
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Objects/Creation/index.html#objectflags
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Objects/Creation/index.html#objectflags

Memory Management and Smart Pointers

68

There's more…
Be careful not to call UObject::ConditionalBeginDestroy() on any object still being
referenced in memory by other objects' pointers.

Managed memory – smart pointers
(TSharedPtr, TWeakPtr, TAutoPtr) to track
an object

When people are afraid that they'll forget the delete call for standard C++ objects they
create, they often use smart pointers to prevent memory leaks. TSharedPtr is a very useful
C++ class that will make any custom C++ object reference-counted—with the exception of
UObject derivatives, which are already reference-counted. An alternate class TWeakPtr is
also provided for pointing to a reference-counted object with the strange property of being
unable to prevent deletion (hence, "weak").

UObject and it's derivative classes (anything created with
NewObject or ConstructObject) cannot use TSharedPtr!

Getting ready
If you don't want to use raw pointers and manually track deletes into your C++ code that does
not use UObject derivatives, then that code is a good candidate for using smart pointers
such as TSharedPtr, TSharedRef, and the like. When you use a dynamically allocated
object (created using the keyword new), you can wrap it up in a reference-counted pointer so
that deallocation happens automatically. The different types of smart pointers determine the
smart pointer behavior and deletion call time. They are as follows:

 f TSharedPtr: A thread-safe (provided you supplied ESPMode::ThreadSafe as
the second argument to the template) reference-counted pointer type that indicates
a shared object. The shared object will be deallocated when there are no more
references to it.

 f TAutoPtr: Non-thread-safe shared pointer.

Chapter 3

69

How to do it...
We can demonstrate use of the four types of smart pointers referred to previously using a
short code segment. In all of this code, the starting pointer can either be a raw pointer, or a
copy of another smart pointer. All you have to do is take the C++ raw pointer and wrap it in a
constructor call to any of TSharedPtr, TSharedRef, TWeakPtr, or TAutoPtr.

For example:

// C++ Class NOT deriving from UObject
class MyClass { };
TSharedPtr<MyClass>sharedPtr(new MyClass());

How it works…
There are some differences between weak pointers and shared pointers. Weak pointers do
not have the capability to keep the object in memory when the reference count drops to 0.

The advantage of using a weak pointer (over a raw pointer) is that when the object underneath
the weak pointer is manually deleted (using ConditionalBeginDestroy()), the weak
pointer's reference becomes a NULL reference. This enables you to check if the resource
underneath the pointer is still allocated properly by checking a statement of the form:

if(ptr.IsValid()) // Check to see if the pointer is valid
{
}

There's more…
Shared pointers are thread-safe. This means that the underlying object can safely be
manipulated on separate threads. Always remember that you cannot use TSharedRef
with UObjects or UObject derivatives—only on your custom C++ classes, or on your
FStructures can you use any of the TSharedPtr, TSharedRef, TWeakPtr classes to
wrap up a raw pointer. You must use TWeakObjectPointer or UPROPERTY() as a starting
point to point to an object using a smart pointer.

You can use TAutoPtr if you do not need the thread-safety guarantee of TSharedPtr.
TAutoPtr will automatically delete an object when the number of references to it drops to 0.

Using TScopedPointer to track an object
A scoped pointer is a pointer that is auto-deleted at the end of the block in which it was
declared. Recall that a scope is just a section of code during which a variable is "alive".
A scope will last until the first closing brace, }, that occurs.

Memory Management and Smart Pointers

70

For example, in the following block, we have two scopes. The outer scope declares an integer
variable x (valid for the entire outer block), while the inner scope declares an integer variable
y (valid for the inner block, after the line on which it is declared):

{
 int x;
 {
 int y;
 } // scope of y ends
} // scope of x ends

Getting ready
Scoped pointers are useful when it is important that a reference-counted object (which is in
danger of going out of scope) is retained for the duration of usage.

How to do it...
To declare a scoped pointer, we simply use the following syntax:

TScopedPointer<AWarrior> warrior(this);

This declares a scoped pointer referencing an object of the type declared within the angle
brackets: < AWarrior >.

How it works…
The TScopedPointer variable type automatically adds a reference count to the variable
pointed to. This prevents deallocation of the underlying object for at least the life of the
scoped pointer.

Unreal's garbage collection system and
UPROPERTY()

When you have an object (such as TArray< >) as a UPROPERTY() member of UCLASS(),
you need to declare that member as UPROPERTY() (even if you won't edit it in blueprints),
otherwise TArray will not stay allocated properly.

Chapter 3

71

How to do it...
Say we have a UCLASS() macro as follows:

UCLASS()
class MYPROJECT_API AWarrior : public AActor
{
 //TArray< FSoundEffect > Greets; // Incorrect
 UPROPERTY() TArray< FSoundEffect > Greets; // Correct
};

You'd have to list the TArray member as UPROPERTY() for it to be properly reference
counted. If you don't do so, you'll get an unexpected memory error type bug sitting about in
the code.

How it works…
The UPROPERTY() declaration tells UE4 that TArray must be properly memory managed.
Without the UPROPERTY() declaration, your TArray won't work properly.

Forcing garbage collection
When memory fills up, and you want to free some of it, garbage collection can be forced. You
seldom need to do this, but you can do it in the case of having a very large texture (or set of
textures) that are reference-counted that you need to clear.

Getting ready
Simply call ConditionalBeginDestroy() on all UObjects that you want deallocated from
memory, or set their reference counts to 0.

How to do it...
Garbage collection is performed by calling the following:

GetWorld()->ForceGarbageCollection(true);

Breakpoints and stepping through code
Breakpoints are how you pause your C++ program to temporarily stop the code from running,
and have a chance to analyze and inspect your program's operation. You can peer at variables,
step through code, and change variable values.

Memory Management and Smart Pointers

72

Getting ready
Breakpoints are easy to set in Visual Studio. All you have to do is press F9 on the line of code
that you want operation to pause at, or click in the grey margin to the left of the line of code
that you want to pause operation at. The code will pause when operation reaches the line
indicated.

How to do it...
1. Press F9 on the line you want execution to pause at. This will add a breakpoint to the

code, indicated by a red dot, as shown in the screenshot below. Clicking on the red
dot toggles it.

2. Set Build Configuration to any of the configurations with Debug in the title
(DebugGame Editor or simply DebugGame if you will launch without the editor).

3. Launch your code by pressing F5 (without holding Ctrl), or select the Debug | Start
Debugging menu option.

4. When the code reaches the red dot, the code's execution will pause.

5. The paused view will take you to the code editor in Debug mode. In this mode, the
windows may appear rearranged, with Solution Explorer possibly moved to the
right, and new windows appearing at the bottom, including Locals, Watch 1, and
Call Stack. If these windows do not appear, find them under the Debug | Windows
submenu.

6. Check out your variables under the Locals window (Debug | Windows | Locals).

7. Press F10 to step over a line of code.

8. Press F11 to step into a line of code.

How it works…
Debuggers are powerful tools that allow you to see everything about your code as it is running,
including variable states.

Chapter 3

73

Stepping over a line of code (F10) executes the line of code in its entirety, and then pauses
the program again, immediately, at the next line. If the line of code is a function call, then the
function is executed without pausing at the first line of code of the function call. For example:

void f()
{
 // F11 pauses here
 UE_LOG(LogTemp, Warning, TEXT("Log message"));
}
int main()
{
 f(); // Breakpoint here: F10 runs and skips to next line
}

Stepping into a line of code (F11) will pause execution at the very next line of code run.

Finding bugs and using call stacks
When you have a bug in your code, Visual Studio halts and allows you to inspect the code. The
place at which Visual Studio halts won't always be the exact location of the bug, but it can be
close. It will at least be at a line of code that doesn't execute properly.

Getting ready
In this recipe, we'll describe Call Stack, and how to trace where you think an error may come
from. Try adding a bug to your code, or add a breakpoint somewhere interesting that you'd like
to pause for inspection.

How to do it...
1. Run the code to a point where a bug occurs by pressing F5, or selecting the Debug |

Start Debugging menu option. For example, add these lines of code:
UObject *o = 0; // Initialize to an illegal null pointer
o->GetName(); // Try and get the name of the object (has
bug)

2. The code will pause at the second line (o->GetName()).

3. When the code pauses, navigate to the Call Stack window (Debug | Windows | Call
Stack).

Memory Management and Smart Pointers

74

How it works…
The Call Stack is a list of function calls that were executed. When a bug occurs, the line on
which it occurred is listed at the top of the Call Stack.

Using the Profiler to identify hot spots
The C++ Profiler is extremely useful for finding sections of code that require a high amount
of processing time. Using the Profiler can help you find sections of code to focus on during
optimization. If you suspect that a region of code runs slowly, then you can actually confirm
that it isn't slow if it doesn't appear highlighted in the Profiler.

How to do it...
1. Go to Debug | Start Diagnostic Tools Without Debugging…

2. In the dialog shown in the preceding screenshot, select the type of analysis you'd like
displayed. You can choose to analyze CPU Usage, GPU Usage, Memory Usage, or
step through a Performance Wizard to assist you in selecting what you want to see.

Chapter 3

75

3. Click on the Start button at the bottom of the dialog.

4. Stop the code after a brief time (less than a minute or two) to halt sample collection.

Do not collect too many samples or the Profiler will take
a really long time to start up.

5. Inspect the results that appear in the .diagsession file. Be sure to browse
all available tabs that open up. Available tabs will vary depending on the type of
analysis performed.

How it works…
The C++ Profiler samples and analyzes the running code, and presents to you a series of
diagrams and figures about how the code performed.

77

Actors and Components

In this chapter, we will cover following recipes:

 f Creating a custom Actor in C++

 f Instantiating an Actor using SpawnActor

 f Destroying an Actor using Destroy and a Timer

 f Destroying an Actor after a delay using SetLifeSpan

 f Implementing the Actor functionality by composition

 f Loading assets into components using FObjectFinder

 f Implementing the Actor functionality by inheritance

 f Attaching components to create a hierarchy

 f Creating a custom Actor Component

 f Creating a custom Scene Component

 f Creating a custom Primitive Component

 f Creating an InventoryComponent for an RPG

 f Creating an OrbitingMovement Component

 f Creating a building that spawns units

Introduction
Actors are classes which have some presence in the game world. Actors gain their specialized
functionality by incorporating Components. This chapter deals with creating custom Actors
and Components, the purpose that they serve, and how they work together.

4

Actors and Components

78

Creating a custom Actor in C++
While there are a number of different types of Actors that ship with Unreal as part of the
default installation, you will find yourself needing to create custom Actors at some point during
your project's development. This might happen when you need to add functionality to an
existing class, combine Components in a combination not present in the default subclasses,
or add additional member variables to a class. The next two recipes demonstrate how to use
either composition or inheritance to customize Actors.

Getting ready
Make sure you have installed Visual Studio and Unreal 4 as per the recipe in Chapter 1, UE4
Development Tools. You'll also need to have either an existing project, or create a new one
using the Unreal-provided wizard.

How to do it...
1. Open up your project within the Unreal Editor, then click on the Add New button in

Content Browser:

2. Select New C++ Class...

Chapter 4

79

3. In the dialog that opens, select Actor from the list:

Actors and Components

80

4. Give your Actor a name, such as MyFirstActor, then click on OK to launch Visual
Studio.

By convention, class names for Actor subclasses begin with an A.
When using this class creation wizard, make sure you don't prefix your
class with A, as the engine automatically adds the prefix for you.

5. When Visual Studio loads, you should see something very similar to the following
listing:

MyFirstActor.h
#pragma once

#include "GameFramework/Actor.h"
#include "MyFirstActor.generated.h"

UCLASS()
class UE4COOKBOOK_API AMyFirstActor : public AActor
{
 GENERATED_BODY()
 public:

Chapter 4

81

 AMyFirstActor();
};
MyFirstActor.cpp
#include "UE4Cookbook.h"
#include "MyFirstActor.h"
AMyFirstActor::AMyFirstActor()
{
 PrimaryActorTick.bCanEverTick = true;
}

How it works...
In time, you'll become familiar enough with the standard code, so you will be able to just
create new classes from Visual Studio without using the Unreal wizard.

 f #pragma once: This preprocessor statement, or pragma, is Unreal's expected
method of implementing include guards—pieces of code that prevent an include file
from causing errors by being referenced multiple times.

 f #include "GameFramework/Actor.h": We're going to create an Actor
subclass, so naturally, we need to include the header file for the class we are
inheriting from.

 f #include "MyFirstActor.generated.h": All actor classes need to include
their generated.h file. This file is automatically created by Unreal Header Tool
(UHT) based on the macros that it detects in your files.

 f UCLASS(): UCLASS is one such macro, which allows us to indicate that a class will
be exposed to Unreal's reflection system. Reflection allows us to inspect and iterate
object properties during runtime as well as manage references to our objects for
garbage collection.

 f class UE4COOKBOOK_API AMyFirstActor : public AActor: This is the
actual declaration of our class. The UE4COOKBOOK_API macro is created by UHT,
and is necessary to help our project compile properly on Windows by ensuring
that our project module's classes are exported correctly in the DLL. You will also
notice that both MyFirstActor and Actor have the prefix A—this is the naming
convention that Unreal requires for native classes that are inherited from Actor.

 f GENERATED_BODY(): GENERATED_BODY is another UHT macro that has been
expanded to include the automatically generated functions that the underlying UE
type system requires.

 f PrimaryActorTick.bCanEverTick = true;: Inside the constructor
implementation, this line enables ticking for this Actor. All Actors have a function
called Tick, and this Boolean variable means that the Actor will have that function
called once per frame enabling the actor to perform actions in every frame as
necessary. As a performance optimization, this is disabled by default.

Actors and Components

82

Instantiating an Actor using SpawnActor
For this recipe, you'll need to have an Actor subclass ready to instantiate. You can use a
built-in class such as StaticMeshActor, but it would help to practice with the custom
Actor you made in the previous recipe.

How to do it...
1. Create a new C++ class, like in the previous recipe. This time, select GameMode as

your base class, giving it a name such as UE4CookbookGameMode.

2. Declare a function override in your new GameMode class:
virtual void BeginPlay() override;

3. Implement BeginPlay in the .cpp file:
void AUE4CookbookGameMode::BeginPlay()
{
 Super::BeginPlay();
 GEngine->AddOnScreenDebugMessage(-1, -1, FColor::Red,
 TEXT("Actor Spawning"));

 FTransform SpawnLocation;
 GetWorld()->SpawnActor<AMyFirstActor>(
 AMyFirstActor::StaticClass(), &SpawnLocation);
}

4. Compile your code, either through Visual Studio or by clicking on the Compile button
in Unreal Editor.

Chapter 4

83

5. Open the World Settings panel for the current level by clicking on the Settings
toolbar icon, then pick World Settings from the drop-down menu. In the GameMode
Override section, change the game mode to the GameMode subclass you just created
as shown in the following two screenshots:

Actors and Components

84

6. Start the level, and verify that GameMode spawns a copy of your Actor in the world
by looking at the World Outliner panel. You can verify that the BeginPlay function is
being run by viewing the Actor Spawning text being displayed on screen. If it doesn't
spawn, make sure there are no obstructions at the world origin to prevent the Actor
from being spawned. You can search the list of objects in the world by typing in the
search bar at the top of the World Outliner panel to filter the entities shown.

How it works...
1. GameMode is a special type of actor which is part of the Unreal Game Framework.

Your map's GameMode is instantiated by the engine automatically when the game
starts.

2. By placing some code into the BeginPlay method of our custom GameMode, we can
run it automatically when the game begins.

3. Inside BeginPlay, we create an FTransform to be used by the SpawnActor
function. By default, FTransform is constructed to have zero rotation and a location
at the origin.

4. We then get a reference to the current level's UWorld instance using GetWorld,
then call its SpawnActor function. We pass in FTransform, which we created
earlier, to specify that the object should be created at its location, that is, the origin.

Chapter 4

85

Destroying an Actor using Destroy and a
Timer

This recipe will reuse the GameMode from the previous recipe, so you should complete it first.

How to do it...
1. Make the following changes to the GameMode declaration:

UPROPERTY()
AMyFirstActor* SpawnedActor;
UFUNCTION()
void DestroyActorFunction();

2. Add #include "MyFirstActor.h" to the implementation file's includes.

3. Assign the results of SpawnActor to the new SpawnedActor variable:
SpawnedActor = GetWorld()->SpawnActor<AMyFirstActor>
(AMyFirstActor::StaticClass(), SpawnLocation);

4. Add the following to the end of the BeginPlay function:
FTimerHandle Timer;
GetWorldTimerManager().SetTimer(Timer, this,
&AUE4CookbookGameMode::DestroyActorFunction, 10);

5. Lastly, implement DestroyActorFunction:
void AUE4CookbookGameMode::DestroyActorFunction()
{
 if (SpawnedActor != nullptr)
 {
 SpawnedActor->Destroy();
 }
}

6. Load the level you created in the previous recipe, which had the game mode set to
your custom class.

7. Play your level, and use the Outliner to verify that your SpawnedActor gets deleted
after 10 seconds.

Actors and Components

86

How it works...
 f We declare a UPROPERTY to store our spawned Actor instance, and a custom

function to call so that we can call Destroy() on a timer:
UPROPERTY()
AMyFirstActor* SpawnedActor;
UFUNCTION()
void DestroyActorFunction();

 f In BeginPlay, we assign the spawned Actor to our new UPROPERTY:
SpawnedActor = GetWorld()->SpawnActor<AMyFirstActor>
(AMyFirstActor::StaticClass(), SpawnLocation);

 f We then declare a TimerHandle object, and pass it to
GetWorldTimerManager::SetTimer. SetTimer calls DestroyActorFunction
on the object pointed to by this pointer after 10 seconds. SetTimer returns an
object—a handle—to allow us to cancel the timer if necessary. The SetTimer function
takes the TimerHandle object in as a reference parameter, hence, we declare it in
advance so that we can pass it into the function properly:
FTimerHandle Timer;
GetWorldTimerManager().SetTimer(Timer, this,
&AUE4CookbookGameMode::DestroyActorFunction, 10);

 f The DestroyActorFunction checks if we have a valid reference to a spawned
Actor:
void AUE4CookbookGameMode::DestroyActorFunction()
{
 if (SpawnedActor != nullptr)
}

 f If we do, it calls Destroy on the instance, so it will be destroyed, and eventually,
garbage collected:

SpawnedActor->Destroy();

Destroying an Actor after a delay using
SetLifeSpan

Let's look at how we can destroy an Actor.

Chapter 4

87

How to do it...
1. Create a new C++ class using the wizard. Select Actor as your base class.
2. In the implementation of Actor, add the following code to the BeginPlay function:

SetLifeSpan(10);

3. Drag a copy of your custom Actor into the viewport within the Editor.
4. Play your level, and look at the Outliner to verify that your Actor instance disappears

after 10 seconds, having destroyed itself.

How it works...
1. We insert our code into the BeginPlay function so that it executes when the

game starts.

2. SetLifeSpan(10);: The SetLifeSpan function allows us to specify a duration in
seconds, after which the Actor calls its own Destroy() method.

Implementing the Actor functionality by
composition

Custom Actors without components don't have a location, and can't be attached to other
Actors. Without a root Component, an Actor doesn't have a base transform, and so it has no
location. Most Actors, therefore, require at least one Component to be useful.

We can create custom Actors through composition—adding a number of components to our
Actor, where each component provides some of the functionality required.

Getting ready
This recipe will use the Actor class created in the Creating a custom Actor in C++ recipe.

How to do it...
1. Add a new member to your custom class in C++ by making the following changes in

the public section:
UPROPERTY()
UStaticMeshComponent* Mesh;

2. Add the following line to the constructor inside the cpp file:
Mesh =
CreateDefaultSubobject<UStaticMeshComponent>("BaseMeshCompo
nent");

Actors and Components

88

3. Verify your code looks like the following snippet, and compile it by using the Compile
button in the editor, or building the project in Visual Studio:
UCLASS()
class UE4COOKBOOK_API AMyFirstActor : public AActor
{
 GENERATED_BODY()
 public:
 AMyFirstActor();

 UPROPERTY()
 UStaticMeshComponent* Mesh;
};

#include "UE4Cookbook.h"
#include "MyFirstActor.h"
AMyFirstActor::AMyFirstActor()
{
 PrimaryActorTick.bCanEverTick = true;

 Mesh = CreateDefaultSubobject<UStaticMeshComponent>
 ("BaseMeshComponent");
}

4. Once you've compiled this code, drag an instance of your class from the Content
Browser out into the game environment, and you will be able to verify that it now
has a transform and other properties, such as a Static Mesh, which comes from the
StaticMeshComponent that we added.

How it works...
1. The UPROPERTY macro we added to the class declaration is a pointer to hold the

component we are using as a subobject of our Actor.
UPROPERTY()
UStaticMeshComponent* Mesh;

2. Using the UPROPERTY() macro ensures that the object declared in the pointer is
considered to be referenced, and won't be garbage-collected (that is, deleted) out
from under us, leaving the pointer dangling.

Chapter 4

89

3. We're using a Static Mesh component, but any of the Actor Component subclasses
would work. Note the asterisk is connected to the variable type in accordance with
Epic's style guide.

4. In the constructor, we initialize the pointer to a known valid value by using a
template function, template<class TReturnType> TReturnType*
CreateDefaultSubobject(FName SubobjectName, bool bTransient =
false).

5. This function is responsible for calling the engine code to appropriately initialize the
component, and return a pointer to the newly constructed object so that we can
give our component pointer a default value. This is important, obviously, to ensure
that the pointer has a valid value at all times, minimizing the risk of dereferencing
uninitialized memory.

6. The function is templated based on the type of object to create, but also takes
two parameters—the first one is the name of the subobject, which ideally should
be human-readable, and the second is whether the object should be transient
(that is—not saved along with the parent object).

See also
 f The following recipe shows you how to reference a mesh asset in your Static Mesh

Component so that it can be displayed without requiring a user to specify a mesh in
the Editor

Loading assets into components using
FObjectFinder

In the last recipe, we created a Static Mesh Component, but we didn't try to load a mesh for
the Component to display. While it's possible to do this in the Editor, sometimes it is helpful to
specify a default in C++.

Getting ready
Follow the previous recipe so you have a custom Actor subclass with a Static Mesh
Component ready.

Actors and Components

90

In your Content Browser, click on the View Options button, and select Show Engine Content:

Browse to Engine Content, then BasicShapes to see the Cube we will be using in this recipe.

How to do it...
1. Add the following code to the constructor of your class:

auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 Mesh->SetStaticMesh(MeshAsset.Object);
}

Chapter 4

91

2. Compile, and verify in the Editor that an instance of your class now has a mesh as its
visual representation.

How it works...
 f We create an instance of the FObjectFinder class, passing in the type of asset

that we are trying to load as a template parameter.

 f FObjectFinder is a class template that helps us to load assets. When we construct
it, we pass in a string that contains a path to the asset that we are trying to load.

 f The string is of the format "{ObjectType}'/Path/To/Asset.Asset'". Note the
use of single quotes in the string.

 f In order to get the string for an asset that already exists in the editor, you can right-
click on the asset in the Content Browser and select Copy Reference. This gives you
the string so you can paste it into your code.

 f We use the auto keyword, from C++11, to avoid typing out our whole object type in
its declaration; the compiler deduces it for us. Without auto, we would have to use
the following code instead:
ConstructorHelpers::FObjectFinder<UStaticMesh> MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));

 f The FObjectFinder class has a property called Object that will either have a
pointer to the desired asset, or will be NULL if the asset could not be found.

 f This means that we can check it against nullptr, and if it isn't null, assign it to
Mesh using SetStaticMesh.

Actors and Components

92

Implementing the Actor functionality by
inheritance

Inheritance is the second way to implement a custom Actor. This is commonly done to make
a new subclass, which adds member variables, functions, or a Component to an existing
Actor class. In this recipe, we are going to add a variable to a custom GameState subclass.

How to do it...
1. In the Unreal Editor, click on Add New in the Content Browser, and then on New C++

Class... then select GameState as the base class, then give your new class a name.

2. Add the following code to the new class header:
AMyGameState();

UFUNCTION()
void SetScore(int32 NewScore);

UFUNCTION()
int32 GetScore();
private:
UPROPERTY()
int32 CurrentScore;

3. Add the following code to the cpp file:
AMyGameState::AMyGameState()
{
 CurrentScore = 0;
}

int32 AMyGameState::GetScore()
{
 return CurrentScore;
}

void AMyGameState::SetScore(int32 NewScore)
{
 CurrentScore = NewScore;
}

Chapter 4

93

4. Confirm that your code looks like the following listing, and compile using the Compile
button in the Unreal Editor:

MyGameState.h
#pragma once

#include "GameFramework/GameState.h"
#include "MyGameState.generated.h"

/**
*
*/
UCLASS()
class UE4COOKBOOK_API AMyGameState : public AGameState
{
 GENERATED_BODY()
 public:
 AMyGameState();

 UPROPERTY()
 int32 CurrentScore;

 UFUNCTION()
 int32 GetScore();

 UFUNCTION()
 void SetScore(uint32 NewScore);
};
MyGameState.cpp
#include "UE4Cookbook.h"
#include "MyGameState.h"

AMyGameState::AMyGameState()
{
 CurrentScore = 0;
}

int32 AMyGameState::GetScore()
{
 return CurrentScore;
}

void AMyGameState::SetScore(uint32 NewScore)
{
 CurrentScore = NewScore;
}

Actors and Components

94

How it works...
1. Firstly, we add the declaration of a default constructor:

AMyGameState();

2. This allows us to set our new member variable to a safe default value of 0 on object
initialization:
AMyGameState::AMyGameState()
{
 CurrentScore = 0;
}

3. We use the int32 type when declaring our new variable to ensure portability
between the various compilers that Unreal Engine supports. This variable is going
to be responsible for storing the current game score while it is running. As always,
we will be marking our variable with UPROPERTY so that it is garbage collected
appropriately. This variable is marked private so that the only way to change the
value is through our functions:
UPROPERTY()
int32 CurrentScore;

4. The GetScore function will retrieve the current score, and return it to the caller. It
is implemented as a simple accessor, which simply returns the underlying member
variable.

5. The second function, SetScore, sets the value of the member variable allowing
external objects to request a change to the score. Placing this request as a function
ensures that the GameState can vet such requests, and only allow them when
valid to prevent cheating. The specifics of such a check are beyond the scope of this
recipe, but the SetScore function is the appropriate place to make it.

6. Our score functions are declared using the UFUNCTION macro for a number of
reasons. Firstly, UFUNCTION, with some additional code, can be called or overridden
by Blueprint. Secondly, UFUNCTION can be marked as exec—this means that they
can be run as console commands by a player or developer during a play session,
which enables debugging.

See also
 f Chapter 8, Integrating C++ and the Unreal Editor, has a recipe, Creating new console

commands, that you can refer to for more information regarding exec and the
console command functionality

Chapter 4

95

Attaching components to create a hierarchy
When creating custom Actors from components, it is important to consider the concept of
Attaching. Attaching components together creates a relationship where transformations
applied to the parent component will also affect the components that are attached to it.

How to do it...
1. Create a new class based on Actor using the editor, and call it HierarchyActor.

2. Add the following properties to your new class:
UPROPERTY()
USceneComponent* Root;
UPROPERTY()
USceneComponent* ChildSceneComponent;
UPROPERTY()
UStaticMeshComponent* BoxOne;
UPROPERTY()
UStaticMeshComponent* BoxTwo;

3. Add the following code to the class constructor:
Root = CreateDefaultSubobject<USceneComponent>("Root");
ChildSceneComponent =
CreateDefaultSubobject<USceneComponent>("ChildSceneComponen
t");
BoxOne =
CreateDefaultSubobject<UStaticMeshComponent>("BoxOne");
BoxTwo =
CreateDefaultSubobject<UStaticMeshComponent>("BoxTwo");

auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 BoxOne->SetStaticMesh(MeshAsset.Object);
 BoxTwo->SetStaticMesh(MeshAsset.Object);
}
RootComponent = Root;
BoxOne->AttachTo(Root);
BoxTwo->AttachTo(ChildSceneComponent);
ChildSceneComponent->AttachTo(Root);
ChildSceneComponent->SetRelativeTransform
(FTransform(FRotator(0, 0, 0), FVector(250, 0, 0),
FVector(0.1f)));

Actors and Components

96

4. Verify that your code looks like the following:
HierarchyActor.h
#pragma once

#include "GameFramework/Actor.h"
#include "HierarchyActor.generated.h"

UCLASS()
class UE4COOKBOOK_API AHierarchyActor : public AActor
{
 GENERATED_BODY()
 public:
 AHierarchyActor();
 virtual void BeginPlay() override;
 virtual void Tick(float DeltaSeconds) override;
 UPROPERTY()
 USceneComponent* Root;
 UPROPERTY()
 USceneComponent* ChildSceneComponent;
 UPROPERTY()
 UStaticMeshComponent* BoxOne;
 UPROPERTY()
 UStaticMeshComponent* BoxTwo;
};
HierarchyActor.cpp

#include "UE4Cookbook.h"
#include "HierarchyActor.h"

AHierarchyActor::AHierarchyActor()
{
 PrimaryActorTick.bCanEverTick = true;
 Root = CreateDefaultSubobject<USceneComponent>("Root");
 ChildSceneComponent =
 CreateDefaultSubobject<USceneComponent>
 ("ChildSceneComponent");
 BoxOne =
 CreateDefaultSubobject<UStaticMeshComponent>("BoxOne");
 BoxTwo =
 CreateDefaultSubobject<UStaticMeshComponent>("BoxTwo");
 auto MeshAsset =
 ConstructorHelpers::FObjectFinder<UStaticMesh>
 (TEXT("StaticMesh'/Engine/BasicShapes/Cube.Cube'"));
 if (MeshAsset.Object != nullptr)

Chapter 4

97

 {
 BoxOne->SetStaticMesh(MeshAsset.Object);
 BoxOne->SetCollisionProfileName
 (UCollisionProfile::Pawn_ProfileName);
 BoxTwo->SetStaticMesh(MeshAsset.Object);
 BoxTwo->SetCollisionProfileName
 (UCollisionProfile::Pawn_ProfileName);
 }
 RootComponent = Root;
 BoxOne->AttachTo(Root);
 BoxTwo->AttachTo(ChildSceneComponent);
 ChildSceneComponent->AttachTo(Root);
 ChildSceneComponent->SetRelativeTransform
 (FTransform(FRotator(0, 0, 0), FVector(250, 0, 0),
 FVector(0.1f)));
}
void AHierarchyActor::BeginPlay()
{
 Super::BeginPlay();
}
void AHierarchyActor::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
}

5. Compile and launch the editor. Drag a copy of HierarchyActor into the scene.

Actors and Components

98

6. Verify that Actor has components in a hierarchy, and that the second box has a
smaller size.

How it works...
1. As usual, we create some UPROPERTY-tagged Components for our actor. We create

two Scene Components, and two Static Mesh components.

2. In the constructor, we create default subobjects for each component, as usual.

3. We then load the static mesh, and if loading is successful, assign it to the two static
mesh components so that they have a visual representation.

4. We then construct a hierarchy within our Actor by attaching components.

5. We set the first Scene Component as the Actor root. This component will determine
the transformations applied to all other components in the hierarchy.

6. We then attach the first box to our new root component, and parent the second scene
component to the first one.

7. We attach the second box to our child scene component so as to demonstrate how
changing the transform on that scene component affects its children, but no other
components in the object.

8. Lastly, we set the relative transform of that scene component so that it moves a
certain distance away from the origin, and is one-tenth of the scale.

9. This means that in the Editor, you can see that the BoxTwo component has inherited
the translation and scaling of its parent component, ChildSceneComponent.

Chapter 4

99

Creating a custom Actor Component
Actor components are an easy way to implement common functionality that should be shared
between Actors. Actor components aren't rendered, but can still perform actions such as
subscribing to events, or communicating with other components of the Actor that they are
present within.

How to do it...
1. Create an ActorComponent named RandomMovementComponent using the Editor

wizard. Add the following class specifiers to the UCLASS macro:
UCLASS(ClassGroup=(Custom),
meta=(BlueprintSpawnableComponent))

2. Add the following UPROPERTY to the class header:
UPROPERTY()
float MovementRadius;

3. Add the following to the constructor's implementation:
MovementRadius = 0;

4. Lastly, add this to the implementation of TickComponent():
AActor* Parent = GetOwner();
if (Parent)
{
 Parent->SetActorLocation(
 Parent->GetActorLocation() +
 FVector(
 FMath::FRandRange(-1, 1)* MovementRadius,
 FMath::FRandRange(-1, 1)* MovementRadius,
 FMath::FRandRange(-1, 1)* MovementRadius));
}

5. Verify that your code looks like the following:
#pragma once
#include "Components/ActorComponent.h"
#include "RandomMovementComponent.generated.h"
UCLASS(ClassGroup=(Custom),
meta=(BlueprintSpawnableComponent))
class UE4COOKBOOK_API URandomMovementComponent : public
UActorComponent
{
 GENERATED_BODY()

Actors and Components

100

 public:
 URandomMovementComponent();
 virtual void BeginPlay() override;
 virtual void TickComponent(float DeltaTime, ELevelTick
 TickType, FActorComponentTickFunction* ThisTickFunction)
 override;
 UPROPERTY()
 float MovementRadius;
};

#include "UE4Cookbook.h"
#include "RandomMovementComponent.h"
URandomMovementComponent::URandomMovementComponent()
{
 bWantsBeginPlay = true;
 PrimaryComponentTick.bCanEverTick = true;
 MovementRadius = 5;
}

void URandomMovementComponent::BeginPlay()
{
 Super::BeginPlay();
}

void URandomMovementComponent::TickComponent(float
DeltaTime, ELevelTick TickType,
FActorComponentTickFunction* ThisTickFunction)
{
 Super::TickComponent(DeltaTime, TickType,
 ThisTickFunction);
 AActor* Parent = GetOwner();
 if (Parent)
 {
 Parent->SetActorLocation(
 Parent->GetActorLocation() +
 FVector(
 FMath::FRandRange(-1, 1)* MovementRadius,
 FMath::FRandRange(-1, 1)* MovementRadius,
 FMath::FRandRange(-1, 1)* MovementRadius));
 }
}

6. Compile your project. In the editor, create an empty Actor, and add your Random
Movement Component to it. To do this, drag an Empty Actor from the Placement
tab out into the level, then click on Add Component in the Details panel, and select
Random Movement. Do the same thing to add a Cube Component so that you have
something to visualize your actor's position with.

Chapter 4

101

7. Play your level, and observe the actor randomly moving around as its location
changes every time the TickComponent function is called.

Actors and Components

102

How it works...
1. Firstly, we add a few specifiers to the UCLASS macro used in our component's

declaration. Adding BlueprintSpawnableComponent to the class' meta values
means that instances of the component can be added to blueprint classes in the
editor. The ClassGroup specifier allows us to indicate what category of class our
Component belongs to in the list of classes:
UCLASS(ClassGroup=(Custom),
meta=(BlueprintSpawnableComponent))

2. Adding MovementRadius as a property to the new component allows us to specify
how far the component will be allowed to wander in a single frame:
UPROPERTY()
float MovementRadius;

3. In the constructor, we initialize this property to a safe default value:
MovementRadius =5;

4. TickComponent is a function that is called every frame by the engine, just like
Tick is for Actors. In its implementation, we retrieve the current location of the
component's owner, that is, the Actor that contains our component, and we
generate an offset in the world space:
AActor* Parent = GetOwner();
if (Parent)
{
 Parent->SetActorLocation(
 Parent->GetActorLocation() +
 FVector(
 FMath::FRandRange(-1, 1)* MovementRadius,
 FMath::FRandRange(-1, 1)* MovementRadius,
 FMath::FRandRange(-1, 1)* MovementRadius)
);
}

5. We add the random offset to the current location to determine a new location, and
move the owning actor to it. This causes the actor's location to randomly change from
frame to frame and dance about.

Creating a custom Scene Component
Scene Components are a subclass of Actor Components that have a transform, that is, a
relative location, rotation, and scale. Just like Actor Components, Scene Components aren't
rendered themselves, but can use their transform for various things, such as spawning other
objects at a fixed offset from an Actor.

Chapter 4

103

How to do it...
1. Create a custom SceneComponent called ActorSpawnerComponent. Make the

following changes to the header:
UFUNCTION()
void Spawn();
UPROPERTY()
TSubclassOf<AActor> ActorToSpawn;

2. Add the following function implementation to the cpp file:
void UActorSpawnerComponent::Spawn()
{
 UWorld* TheWorld = GetWorld();
 if (TheWorld != nullptr)
 {
 FTransform ComponentTransform(this-
 >GetComponentTransform());
 TheWorld->SpawnActor(ActorToSpawn,&ComponentTransform);
 }
}

3. Verify your code against this snippet:
ActorSpawnerComponent.h
#pragma once

#include "Components/SceneComponent.h"
#include "ActorSpawnerComponent.generated.h"

UCLASS(ClassGroup=(Custom),
meta=(BlueprintSpawnableComponent))
class UE4COOKBOOK_API UActorSpawnerComponent : public
USceneComponent
{
 GENERATED_BODY()

 public:
 UActorSpawnerComponent();

 virtual void BeginPlay() override;

 virtual void TickComponent(float DeltaTime, ELevelTick
 TickType, FActorComponentTickFunction* ThisTickFunction)
 override;

Actors and Components

104

 UFUNCTION(BlueprintCallable, Category=Cookbook)
 void Spawn();

 UPROPERTY(EditAnywhere)
 TSubclassOf<AActor> ActorToSpawn;

};
ActorSpawnerComponent.cpp
#include "UE4Cookbook.h"
#include "ActorSpawnerComponent.h"

UActorSpawnerComponent::UActorSpawnerComponent()
{
 bWantsBeginPlay = true;
 PrimaryComponentTick.bCanEverTick = true;
}

void UActorSpawnerComponent::BeginPlay()
{
 Super::BeginPlay();
}

void UActorSpawnerComponent::TickComponent(float
DeltaTime, ELevelTick TickType,
FActorComponentTickFunction* ThisTickFunction)
{
 Super::TickComponent(DeltaTime, TickType,
 ThisTickFunction);
}

void UActorSpawnerComponent::Spawn()
{
 UWorld* TheWorld = GetWorld();
 if (TheWorld != nullptr)
 {
 FTransform ComponentTransform(this
 ->GetComponentTransform());
 TheWorld->SpawnActor(ActorToSpawn,&ComponentTransform);
 }
}

4. Compile and open your project. Drag an empty Actor into the scene and add your
ActorSpawnerComponent to it. Select your new Component in the Details panel,
and assign a value to ActorToSpawn. Now whenever Spawn() is called on an
instance of your component, it will instantiate a copy of the Actor class specified in
ActorToSpawn.

Chapter 4

105

How it works...
1. We create the Spawn UFUNCTION and a variable called ActorToSpawn. The

ActorToSpawn UPROPERTY is of type TSubclassOf< >, a template type that
allows us to restrict a pointer to either a base class or subclasses thereof. This also
means that within the editor, we will get a pre-filtered list of classes to pick from,
preventing us from accidentally assigning an invalid value.

2. Inside the Spawn function's implementation, we get access to our world, and check it
for validity.

3. SpawnActor wants an FTransform* to specify the location to spawn the new
actor, so we create a new stack variable to contain a copy of the current component's
transform.

4. If TheWorld is valid, we request it to spawn an instance of the ActorToSpawn-
specified subclass, passing in the address of the FTransform we just created, and
which now contains the desired location for the new actor.

Actors and Components

106

See also
 f Chapter 8, Integrating C++ and the Unreal Editor, contains a much more detailed

investigation into how you can make things Blueprint-accessible.

Creating a custom Primitive Component
Primitive components are the most complex type of Actor Component because they not
only have a transform, but are also rendered on screen.

How to do it...
1. Create a custom C++ class based on MeshComponent. When Visual Studio loads,

add the following to your class header file:
UCLASS(ClassGroup=Experimental, meta =
(BlueprintSpawnableComponent))
public:
virtual FPrimitiveSceneProxy* CreateSceneProxy() override;
TArray<int32> Indices;
TArray<FVector> Vertices;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
Materials)
UMaterial* TheMaterial;

2. We need to create an implementation for our overridden CreateSceneProxy
function in our cpp file:
FPrimitiveSceneProxy* UMyMeshComponent::CreateSceneProxy()
{
 FPrimitiveSceneProxy* Proxy = NULL;
 Proxy = new FMySceneProxy(this);
 return Proxy;
}

3. This function returns an instance of FMySceneProxy, which we need to implement.
Do so by adding the following code above the CreateSceneProxy function:
class FMySceneProxy : public FPrimitiveSceneProxy
{
 public:
 FMySceneProxy(UMyMeshComponent* Component)
 :FPrimitiveSceneProxy(Component),
 Indices(Component->Indices),
 TheMaterial(Component->TheMaterial)
 {

Chapter 4

107

 VertexBuffer = FMyVertexBuffer();
 IndexBuffer = FMyIndexBuffer();
 for (FVector Vertex : Component->Vertices)
 {
 Vertices.Add(FDynamicMeshVertex(Vertex));
 }
 };
 UPROPERTY()
 UMaterial* TheMaterial;
 virtual FPrimitiveViewRelevance GetViewRelevance(const
 FSceneView* View) const override
 {
 FPrimitiveViewRelevance Result;
 Result.bDynamicRelevance = true;
 Result.bDrawRelevance = true;
 Result.bNormalTranslucencyRelevance = true;
 return Result;
 }
 virtual void GetDynamicMeshElements(const TArray<const
 FSceneView*>& Views, const FSceneViewFamily& ViewFamily,
 uint32 VisibilityMap, FMeshElementCollector& Collector)
 const override
 {
 for (int32 ViewIndex = 0; ViewIndex < Views.Num();
 ViewIndex++)
 {
 FDynamicMeshBuilder MeshBuilder;
 if (Vertices.Num() == 0)
 {
 return;
 }
 MeshBuilder.AddVertices(Vertices);
 MeshBuilder.AddTriangles(Indices);
 MeshBuilder.GetMesh(FMatrix::Identity, new
 FColoredMaterialRenderProxy(TheMaterial
 ->GetRenderProxy(false), FLinearColor::Gray),
 GetDepthPriorityGroup(Views[ViewIndex]), true, true,
 ViewIndex, Collector);
 }
 }
 uint32 FMySceneProxy::GetMemoryFootprint(void) const
 override
 {
 return sizeof(*this);
 }

Actors and Components

108

 virtual ~FMySceneProxy() {};
 private:
 TArray<FDynamicMeshVertex> Vertices;
 TArray<int32> Indices;
 FMyVertexBuffer VertexBuffer;
 FMyIndexBuffer IndexBuffer;
};

4. Our scene proxy requires a vertex buffer and an index buffer. The following
subclasses should be placed above the Scene Proxy's implementation:
class FMyVertexBuffer : public FVertexBuffer
{
 public:
 TArray<FVector> Vertices;
 virtual void InitRHI() override
 {
 FRHIResourceCreateInfo CreateInfo;
 VertexBufferRHI = RHICreateVertexBuffer(Vertices.Num()
 * sizeof(FVector), BUF_Static, CreateInfo);
 void* VertexBufferData =
 RHILockVertexBuffer(VertexBufferRHI, 0, Vertices.Num()
 * sizeof(FVector), RLM_WriteOnly);
 FMemory::Memcpy(VertexBufferData, Vertices.GetData(),
 Vertices.Num() * sizeof(FVector));
 RHIUnlockVertexBuffer(VertexBufferRHI);
 }
};
class FMyIndexBuffer : public FIndexBuffer
{
 public:
 TArray<int32> Indices;
 virtual void InitRHI() override
 {
 FRHIResourceCreateInfo CreateInfo;
 IndexBufferRHI = RHICreateIndexBuffer(sizeof(int32),
 Indices.Num() * sizeof(int32), BUF_Static, CreateInfo);
 void* Buffer = RHILockIndexBuffer(IndexBufferRHI, 0,
 Indices.Num() * sizeof(int32), RLM_WriteOnly);
 FMemory::Memcpy(Buffer, Indices.GetData(),
 Indices.Num() * sizeof(int32));
 RHIUnlockIndexBuffer(IndexBufferRHI);
 }
};

Chapter 4

109

5. Add the following constructor implementation:
UMyMeshComponent::UMyMeshComponent()
{
 static ConstructorHelpers::FObjectFinder<UMaterial>
 Material(TEXT
 ("Material'/Engine/BasicShapes/BasicShapeMaterial'"));
 if (Material.Object != NULL)
 {
 TheMaterial = (UMaterial*)Material.Object;
 }
 Vertices.Add(FVector(10, 0, 0));
 Vertices.Add(FVector(0, 10, 0));
 Vertices.Add(FVector(0, 0, 10));
 Indices.Add(0);
 Indices.Add(1);
 Indices.Add(2);
}

6. Verify that your code looks like the following:
#pragma once

#include "Components/MeshComponent.h"
#include "MyMeshComponent.generated.h"

UCLASS(ClassGroup = Experimental, meta =
(BlueprintSpawnableComponent))
class UE4COOKBOOK_API UMyMeshComponent : public
UMeshComponent
{
 GENERATED_BODY()
 public:
 virtual FPrimitiveSceneProxy* CreateSceneProxy()
 override;
 TArray<int32> Indices;
 TArray<FVector> Vertices;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 Materials)
 UMaterial* TheMaterial;
 UMyMeshComponent();
};

#include "UE4Cookbook.h"
#include "MyMeshComponent.h"
#include <VertexFactory.h>

Actors and Components

110

#include "DynamicMeshBuilder.h"

class FMyVertexBuffer : public FVertexBuffer
{
 public:
 TArray<FVector> Vertices;

 virtual void InitRHI() override
 {
 FRHIResourceCreateInfo CreateInfo;
 VertexBufferRHI = RHICreateVertexBuffer
 (Vertices.Num() *
 sizeof(FVector), BUF_Static, CreateInfo);

 void* VertexBufferData =
 RHILockVertexBuffer(VertexBufferRHI, 0, Vertices.Num()
 * sizeof(FVector), RLM_WriteOnly);
 FMemory::Memcpy(VertexBufferData, Vertices.GetData(),
 Vertices.Num() * sizeof(FVector));
 RHIUnlockVertexBuffer(VertexBufferRHI);
 }
};

class FMyIndexBuffer : public FIndexBuffer
{
 public:
 TArray<int32> Indices;

 virtual void InitRHI() override
 {
 FRHIResourceCreateInfo CreateInfo;
 IndexBufferRHI = RHICreateIndexBuffer(sizeof(int32),
 Indices.Num() * sizeof(int32), BUF_Static, CreateInfo);

 void* Buffer = RHILockIndexBuffer(IndexBufferRHI, 0,
 Indices.Num() * sizeof(int32), RLM_WriteOnly);
 FMemory::Memcpy(Buffer, Indices.GetData(),
 Indices.Num() * sizeof(int32));
 RHIUnlockIndexBuffer(IndexBufferRHI);
 }
};
class FMySceneProxy : public FPrimitiveSceneProxy
{
 public:
 FMySceneProxy(UMyMeshComponent* Component)

Chapter 4

111

 :FPrimitiveSceneProxy(Component),
 Indices(Component->Indices),
 TheMaterial(Component->TheMaterial)
 {
 VertexBuffer = FMyVertexBuffer();
 IndexBuffer = FMyIndexBuffer();

 for (FVector Vertex : Component->Vertices)
 {
 Vertices.Add(FDynamicMeshVertex(Component
 ->GetComponentLocation() + Vertex));
 }
 };

UPROPERTY()
 UMaterial* TheMaterial;

 virtual FPrimitiveViewRelevance GetViewRelevance(const
 FSceneView* View) const override
 {
 FPrimitiveViewRelevance Result;
 Result.bDynamicRelevance = true;
 Result.bDrawRelevance = true;
 Result.bNormalTranslucencyRelevance = true;
 return Result;
 }

 virtual void GetDynamicMeshElements(const TArray<const
 FSceneView*>& Views, const FSceneViewFamily& ViewFamily,
 uint32 VisibilityMap, FMeshElementCollector& Collector)
 const override
 {
 for (int32 ViewIndex = 0; ViewIndex < Views.Num();
 ViewIndex++)
 {
 FDynamicMeshBuilder MeshBuilder;
 if (Vertices.Num() == 0)
 {
 return;
 }
 MeshBuilder.AddVertices(Vertices);
 MeshBuilder.AddTriangles(Indices);

Actors and Components

112

 MeshBuilder.GetMesh(FMatrix::Identity, new
 FColoredMaterialRenderProxy(TheMaterial
 ->GetRenderProxy(false), FLinearColor::Gray),
 GetDepthPriorityGroup(Views[ViewIndex]),
 true, true, ViewIndex, Collector);

 }
 }

 void FMySceneProxy::OnActorPositionChanged() override
 {
 VertexBuffer.ReleaseResource();
 IndexBuffer.ReleaseResource();
 }

 uint32 FMySceneProxy::GetMemoryFootprint(void) const
 override
 {
 return sizeof(*this);
 }
 virtual ~FMySceneProxy() {};
 private:
 TArray<FDynamicMeshVertex> Vertices;
 TArray<int32> Indices;
 FMyVertexBuffer VertexBuffer;
 FMyIndexBuffer IndexBuffer;
};

FPrimitiveSceneProxy* UMyMeshComponent::CreateSceneProxy()
{
 FPrimitiveSceneProxy* Proxy = NULL;
 Proxy = new FMySceneProxy(this);
 return Proxy;
}

UMyMeshComponent::UMyMeshComponent()
{
 static ConstructorHelpers::FObjectFinder<UMaterial>
 Material(TEXT
 ("Material'/Engine/BasicShapes/BasicShapeMaterial'"));

 if (Material.Object != NULL)
 {
 TheMaterial = (UMaterial*)Material.Object;
 }

Chapter 4

113

 Vertices.Add(FVector(10, 0, 0));
 Vertices.Add(FVector(0, 10, 0));
 Vertices.Add(FVector(0, 0, 10));
 Indices.Add(0);
 Indices.Add(1);
 Indices.Add(2);
}

7. Create an empty Actor in the editor and add the new mesh component to it to
see that your triangle is rendered. Experiment by changing the values added with
Vertices. Add and see how the geometry changes after a recompile.

How it works...
1. In order for an Actor to be rendered, the data describing it needs to be made

accessible to the rendering thread.

2. The easiest way to do this is with a Scene Proxy—a proxy object that is created on the
render thread, and is designed to provide thread safety to the data transfer.

3. The PrimitiveComponent class defines a CreateSceneProxy function that
returns FPrimitiveSceneProxy*. This function allows custom components
like ours to return an object based on FPrimitiveSceneProxy, leveraging
polymorphism.

4. We define the constructor of the SceneProxy object to take in an instance of our
component so that each SceneProxy created knows about the component instance
it is associated with.

5. That data is then cached in the Scene Proxy, and passed to the renderer using
GetDynamicMeshElements.

Actors and Components

114

6. We create an IndexBuffer and a VertexBuffer. Each of the buffer classes
we create are helpers that assist the Scene Proxy with allocating platform-specific
memory for the two buffers. They do so in the InitRHI (also known as Initialize
Render Hardware Interface) function, wherein they use functions from the RHI API to
create a vertex buffer, lock it, copy the required data, and then unlock it.

7. Inside the component's constructor, we look for a material asset that is built into the
engine with the ObjectFinder template so that our mesh will have a material.

8. We then add some vertices and indexes to our buffers so that the mesh can be drawn
when the renderer requests a Scene Proxy.

Creating an InventoryComponent for an RPG
An InventoryComponent enables its containing Actor to store InventoryActors in its
inventory, and place them back into the game world.

Getting ready
Make sure you've followed the Axis Mappings – keyboard, mouse and gamepad directional
input for an FPS character recipe in Chapter 6, Input and Collision, before continuing with this
recipe, as it shows you how to create a simple character.

Also, the recipe Instantiating an Actor using SpawnActor in this chapter shows you how to
create a custom GameMode.

How to do it...
1. Create an ActorComponent subclass using the engine called

InventoryComponent, then add the following code to it:
UPROPERTY()
TArray<AInventoryActor*> CurrentInventory;
UFUNCTION()
int32 AddToInventory(AInventoryActor* ActorToAdd);

UFUNCTION()
void RemoveFromInventory(AInventoryActor* ActorToRemove);

2. Add the following function implementation to the source file:
int32 UInventoryComponent::AddToInventory(AInventoryActor*
ActorToAdd)
{
 return CurrentInventory.Add(ActorToAdd);
}

Chapter 4

115

void
UInventoryComponent::RemoveFromInventory(AInventoryActor*
ActorToRemove)
{
 CurrentInventory.Remove(ActorToRemove);
}

3. Next, create a new StaticMeshActor subclass called InventoryActor. Add the
following to its declaration:
virtual void PickUp();
virtual void PutDown(FTransform TargetLocation);

4. Implement the new functions in the implementation file:
void AInventoryActor::PickUp()
{
 SetActorTickEnabled(false);
 SetActorHiddenInGame(true);
 SetActorEnableCollision(false);
}

void AInventoryActor::PutDown(FTransform TargetLocation)
{
 SetActorTickEnabled(true);
 SetActorHiddenInGame(false);
 SetActorEnableCollision(true);
 SetActorLocation(TargetLocation.GetLocation());
}

5. Also, change the constructor to look like the following:
AInventoryActor::AInventoryActor()
:Super()
{
 PrimaryActorTick.bCanEverTick = true;
 auto MeshAsset =
 ConstructorHelpers::FObjectFinder<UStaticMesh>
 (TEXT("StaticMesh'/Engine/BasicShapes/Cube.Cube'"));
 if (MeshAsset.Object != nullptr)
 {
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()
 ->SetCollisionProfileName
 (UCollisionProfile::Pawn_ProfileName);
 }

Actors and Components

116

 GetStaticMeshComponent()
 ->SetMobility(EComponentMobility::Movable);
 SetActorEnableCollision(true);
}

6. We need to add an InventoryComponent to our character so that we have an
inventory that we can store items in. Create a new SimpleCharacter subclass
using the editor, and add the following to its declaration:
UPROPERTY()
UInventoryComponent* MyInventory;

UFUNCTION()
virtual void SetupPlayerInputComponent(class
UInputComponent* InputComponent) override;

UFUNCTION()
void DropItem();
UFUNCTION()
void TakeItem(AInventoryActor* InventoryItem);

UFUNCTION()
virtual void NotifyHit(class UPrimitiveComponent* MyComp,
AActor* Other, class UPrimitiveComponent* OtherComp, bool
bSelfMoved, FVector HitLocation, FVector HitNormal, FVector
NormalImpulse, const FHitResult& Hit) override;

7. Add this line to the character's constructor implementation:
MyInventory =
CreateDefaultSubobject<UInventoryComponent>("MyInventory");

8. Add this code to the overriden SetupPlayerInputComponent:
void AInventoryCharacter::SetupPlayerInputComponent(class
UInputComponent* InputComponent)
{
 Super::SetupPlayerInputComponent(InputComponent);
 InputComponent->BindAction("DropItem",
 EInputEvent::IE_Pressed, this,
 &AInventoryCharacter::DropItem);
}

9. Finally, add the following function implementations:
void AInventoryCharacter::DropItem()
{
 if (MyInventory->CurrentInventory.Num() == 0)
 {
 return;

Chapter 4

117

 }

 AInventoryActor* Item = MyInventory-
 >CurrentInventory.Last();
 MyInventory->RemoveFromInventory(Item);
 FVector ItemOrigin;
 FVector ItemBounds;
 Item->GetActorBounds(false, ItemOrigin, ItemBounds);
 FTransform PutDownLocation = GetTransform() +
 FTransform(RootComponent->GetForwardVector() *
 ItemBounds.GetMax());
 Item->PutDown(PutDownLocation);
}

void AInventoryCharacter::NotifyHit(class UPrimitiveComponent*
MyComp, AActor* Other, class UPrimitiveComponent* OtherComp, bool
bSelfMoved, FVector HitLocation, FVector HitNormal, FVector
NormalImpulse, const FHitResult& Hit)
{
 AInventoryActor* InventoryItem =
 Cast<AInventoryActor>(Other);
 if (InventoryItem != nullptr)
 {
 TakeItem(InventoryItem);
 }
}

void AInventoryCharacter::TakeItem(AInventoryActor*
InventoryItem)
{
 InventoryItem->PickUp();
 MyInventory->AddToInventory(InventoryItem);
}

10. Compile your code and test it in the Editor. Create a new level and drag a few
instances of InventoryActor out into your scene.

11. Refer to the Instantiating an Actor using SpawnActor recipe if you need a reminder
of how to override the current game mode. Add the following line to the constructor
of your Game Mode from that recipe, then set your level's GameMode to the one you
created in that recipe:
DefaultPawnClass = AInventoryCharacter::StaticClass();

Actors and Components

118

12. Verify your code against the listing here before compiling and launching your project.
#pragma once

#include "GameFramework/Character.h"
#include "InventoryComponent.h"
#include "InventoryCharacter.generated.h"

UCLASS()
class UE4COOKBOOK_API AInventoryCharacter : public
ACharacter
{
 GENERATED_BODY()

 public:
 AInventoryCharacter();
 virtual void BeginPlay() override;
 virtual void Tick(float DeltaSeconds) override;
 virtual void SetupPlayerInputComponent(class
 UInputComponent* InputComponent) override;

 UPROPERTY()
 UInventoryComponent* MyInventory;
 UPROPERTY()
 UCameraComponent* MainCamera;
 UFUNCTION()
 void TakeItem(AInventoryActor* InventoryItem);
 UFUNCTION()
 void DropItem();
 void MoveForward(float AxisValue);
 void MoveRight(float AxisValue);
 void PitchCamera(float AxisValue);
 void YawCamera(float AxisValue);

 UFUNCTION()
 virtual void NotifyHit(class UPrimitiveComponent* MyComp,
 AActor* Other, class UPrimitiveComponent* OtherComp, bool
 bSelfMoved, FVector HitLocation, FVector HitNormal,
 FVector NormalImpulse, const FHitResult& Hit) override;
 private:
 FVector MovementInput;
 FVector CameraInput;
};

#include "UE4Cookbook.h"

Chapter 4

119

#include "InventoryCharacter.h"

AInventoryCharacter::AInventoryCharacter()
:Super()
{
 PrimaryActorTick.bCanEverTick = true;
 MyInventory =
 CreateDefaultSubobject<UInventoryComponent>
 ("MyInventory");
 MainCamera = CreateDefaultSubobject<UCameraComponent>
 ("MainCamera");
 MainCamera->bUsePawnControlRotation = 0;
}

void AInventoryCharacter::BeginPlay()
{
 Super::BeginPlay();
 MainCamera->AttachTo(RootComponent);
}

void AInventoryCharacter::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
 if (!MovementInput.IsZero())
 {
 MovementInput *= 100;
 FVector InputVector = FVector(0,0,0);
 InputVector += GetActorForwardVector()* MovementInput.X
 * DeltaTime;
 InputVector += GetActorRightVector()* MovementInput.Y *
 DeltaTime;
 GetCharacterMovement()->AddInputVector(InputVector);
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 FString::Printf(TEXT("x- %f, y - %f, z -
 %f"),InputVector.X, InputVector.Y, InputVector.Z));
 }

 if (!CameraInput.IsNearlyZero())
 {
 FRotator NewRotation = GetActorRotation();
 NewRotation.Pitch += CameraInput.Y;
 NewRotation.Yaw += CameraInput.X;
 APlayerController* MyPlayerController
 =Cast<APlayerController>(GetController());
 if (MyPlayerController != nullptr)

Actors and Components

120

 {
 MyPlayerController->AddYawInput(CameraInput.X);
 MyPlayerController->AddPitchInput(CameraInput.Y);
 }
 SetActorRotation(NewRotation);
 }
}
void AInventoryCharacter::SetupPlayerInputComponent(class
UInputComponent* InputComponent)
{
 Super::SetupPlayerInputComponent(InputComponent);
 InputComponent->BindAxis("MoveForward", this,
 &AInventoryCharacter::MoveForward);
 InputComponent->BindAxis("MoveRight", this,
 &AInventoryCharacter::MoveRight);
 InputComponent->BindAxis("CameraPitch", this,
 &AInventoryCharacter::PitchCamera);
 InputComponent->BindAxis("CameraYaw", this,
 &AInventoryCharacter::YawCamera);
 InputComponent->BindAction("DropItem",
 EInputEvent::IE_Pressed, this,
 &AInventoryCharacter::DropItem);
}
void AInventoryCharacter::DropItem()
{
 if (MyInventory->CurrentInventory.Num() == 0)
 {
 return;
 }
 AInventoryActor* Item = MyInventory
 ->CurrentInventory.Last();
 MyInventory->RemoveFromInventory(Item);
 FVector ItemOrigin;
 FVector ItemBounds;
 Item->GetActorBounds(false, ItemOrigin, ItemBounds);
 FTransform PutDownLocation = GetTransform() +
 FTransform(RootComponent->GetForwardVector() *
 ItemBounds.GetMax());
 Item->PutDown(PutDownLocation);
}

void AInventoryCharacter::MoveForward(float AxisValue)
{
 MovementInput.X = FMath::Clamp<float>(AxisValue, -1.0f,
 1.0f);

Chapter 4

121

}

void AInventoryCharacter::MoveRight(float AxisValue)
{
 MovementInput.Y = FMath::Clamp<float>(AxisValue, -1.0f,
 1.0f);
}

void AInventoryCharacter::PitchCamera(float AxisValue)
{
 CameraInput.Y = AxisValue;
}
void AInventoryCharacter::YawCamera(float AxisValue)
{
 CameraInput.X = AxisValue;
}
void AInventoryCharacter::NotifyHit(class
UPrimitiveComponent* MyComp, AActor* Other, class
UPrimitiveComponent* OtherComp, bool bSelfMoved, FVector
HitLocation, FVector HitNormal, FVector NormalImpulse,
const FHitResult& Hit)
{
 AInventoryActor* InventoryItem =
 Cast<AInventoryActor>(Other);
 if (InventoryItem != nullptr)
 {
 TakeItem(InventoryItem);
 }
}
void AInventoryCharacter::TakeItem(AInventoryActor*
InventoryItem)
{
 InventoryItem->PickUp();
 MyInventory->AddToInventory(InventoryItem);
}

#pragma once

#include "Components/ActorComponent.h"
#include "InventoryActor.h"
#include "InventoryComponent.generated.h"

UCLASS(ClassGroup=(Custom),
meta=(BlueprintSpawnableComponent))

Actors and Components

122

class UE4COOKBOOK_API UInventoryComponent : public
UActorComponent
{
 GENERATED_BODY()

 public:
 UInventoryComponent();
 virtual void TickComponent(float DeltaTime, ELevelTick
 TickType, FActorComponentTickFunction* ThisTickFunction)
 override;

 UPROPERTY()
 TArray<AInventoryActor*> CurrentInventory;
 UFUNCTION()
 int32 AddToInventory(AInventoryActor* ActorToAdd);

 UFUNCTION()
 void RemoveFromInventory(AInventoryActor* ActorToRemove);
};
#include "UE4Cookbook.h"
#include "InventoryComponent.h"

UInventoryComponent::UInventoryComponent()
{
 bWantsBeginPlay = true;
 PrimaryComponentTick.bCanEverTick = true;
}
void UInventoryComponent::TickComponent(float DeltaTime,
ELevelTick TickType, FActorComponentTickFunction*
ThisTickFunction)
{
 Super::TickComponent(DeltaTime, TickType,
 ThisTickFunction);
}

int32 UInventoryComponent::AddToInventory(AInventoryActor*
ActorToAdd)
{
 return CurrentInventory.Add(ActorToAdd);
}

void UInventoryComponent::RemoveFromInventory
(AInventoryActor* ActorToRemove)
{
 CurrentInventory.Remove(ActorToRemove);
}

#pragma once

#include "GameFramework/GameMode.h"

Chapter 4

123

#include "UE4CookbookGameMode.generated.h"

UCLASS()
class UE4COOKBOOK_API AUE4CookbookGameMode : public
AGameMode
{
 GENERATED_BODY()

 public:
 AUE4CookbookGameMode();
 };

#include "UE4Cookbook.h"
#include "MyGameState.h"
#include "InventoryCharacter.h"
#include "UE4CookbookGameMode.h"

AUE4CookbookGameMode::AUE4CookbookGameMode()
{
 DefaultPawnClass = AInventoryCharacter::StaticClass();
 GameStateClass = AMyGameState::StaticClass();
}

13. Lastly, we need to add our InputAction to the bindings in the editor. To do this,
bring up the Project Settings... window by selecting Edit | Project Settings...:

Actors and Components

124

Then, select Input on the left-hand side. Select the plus symbol beside Action
Mappings, and type DropItem into the text box that appears. Underneath it is a list
of all the potential keys you can bind to this action. Select the one labelled E. Your
settings should now look like the following:

14. Then we can hit play, walk over to our inventory actor, and it will be picked up. Press
E to place the actor in a new location! Test this with multiple inventory actors to see
that they all get collected and placed correctly.

How it works...
1. Our new component contains an array of actors, storing them by pointer as well as

declaring functions that add or remove items to the array. These functions are simple
wrappers around the TArray add/remove functionality, but allow us to optionally do
things such as checking if the array is within a specified size limit before going ahead
with storing the item.

2. InventoryActor is a base class that can be used for all items that can be taken by
a player.

3. In the PickUp function, we need to disable the actor when it is picked up. To do that,
we have to do the following:

 � Disable actor ticking

 � Hide the actor

 � Disable collision

Chapter 4

125

4. We do this with the functions SetActorTickEnabled, SetActorHiddenInGame,
and SetActorEnableCollision.

5. The PutDown function is the reverse. We enable actor ticking, unhide the actor, and
then turn its collision back on, and we transport the actor to the desired location.

6. We add an InventoryComponent to our new character as well as a function to take
items.

7. In the constructor for our character, we create a default subobject for our
InventoryComponent.

8. We also add a NotifyHit override so that we are notified when the character hits
other Actors.

9. Inside this function, we cast the other actor to an InventoryActor. If the cast is
successful, then we know our Actor was an InventoryActor, and so we can call
the TakeItem function to take it.

10. In the TakeItem function, we notify the Inventory item actor that we want to pick it
up, then we add it to our inventory.

11. The last piece of functionality in the InventoryCharacter is the DropItem
function. This function checks if we have any items in our inventory. If it has any
items, we remove it from our inventory, then we calculate a safe distance in front
of our player character to drop the item using the Item Bounds to get its maximum
bounding box dimension.

12. We then inform the item that we are placing it in the world at the desired location.

See also
 f Chapter 5, Handling Events and Delegates, has a detailed explanation of how events

and input handling work together within the Engine, as well as a recipe for the
SimpleCharacter class mentioned in this recipe

 f Chapter 6, Input and Collision, also has recipes concerning the binding of input
actions and axes

Creating an OrbitingMovement Component
This component is similar to RotatingMovementComponent in that it is designed to make
the components parented to it move in a particular way. In this instance, it will move any
attached components in an orbit around a fixed point at a fixed distance.

This could be used, for example, for a shield that orbits around a character in an Action RPG.

Actors and Components

126

How to do it...
1. Create a new SceneComponent subclass and add the following properties to the

class declaration:
UPROPERTY()
bool RotateToFaceOutwards;
UPROPERTY()
float RotationSpeed;
UPROPERTY()
float OrbitDistance;
float CurrentValue;

2. Add the following to the constructor:
RotationSpeed = 5;
OrbitDistance = 100;
CurrentValue = 0;
RotateToFaceOutwards = true;

3. Add the following code to the TickComponent function:
float CurrentValueInRadians =
FMath::DegreesToRadians<float>(CurrentValue);
SetRelativeLocation(FVector(OrbitDistance *
FMath::Cos(CurrentValueInRadians), OrbitDistance *
FMath::Sin(CurrentValueInRadians), RelativeLocation.Z));
if (RotateToFaceOutwards)
{
 FVector LookDir = (RelativeLocation).GetSafeNormal();
 FRotator LookAtRot = LookDir.Rotation();
 SetRelativeRotation(LookAtRot);
}
CurrentValue = FMath::Fmod(CurrentValue + (RotationSpeed*
DeltaTime) ,360);

4. Verify your work against the following listing:
#pragma once
#include "Components/SceneComponent.h"
#include "OrbitingMovementComponent.generated.h"

UCLASS(ClassGroup=(Custom),
meta=(BlueprintSpawnableComponent))
class UE4COOKBOOK_API UOrbitingMovementComponent : public
USceneComponent
{
 GENERATED_BODY()
 public:

Chapter 4

127

 // Sets default values for this component's properties
 UOrbitingMovementComponent();

 // Called when the game starts
 virtual void BeginPlay() override;
 // Called every frame
 virtual void TickComponent(float DeltaTime, ELevelTick
 TickType, FActorComponentTickFunction* ThisTickFunction)
 override;

 UPROPERTY()
 bool RotateToFaceOutwards;
 UPROPERTY()
 float RotationSpeed;
 UPROPERTY()
 float OrbitDistance;
 float CurrentValue;
};
#include "UE4Cookbook.h"
#include "OrbitingMovementComponent.h"
// Sets default values for this component's properties
UOrbitingMovementComponent::UOrbitingMovementComponent()
{
 // Set this component to be initialized when the game
 starts, and to be ticked every frame. You can turn these
 features
 // off to improve performance if you don't need them.
 bWantsBeginPlay = true;
 PrimaryComponentTick.bCanEverTick = true;
 RotationSpeed = 5;
 OrbitDistance = 100;
 CurrentValue = 0;
 RotateToFaceOutwards = true;
 //...
}

// Called when the game starts
void UOrbitingMovementComponent::BeginPlay()
{
 Super::BeginPlay();
 //...
}
// Called every frame

Actors and Components

128

void UOrbitingMovementComponent::TickComponent(float
DeltaTime, ELevelTick TickType,
FActorComponentTickFunction* ThisTickFunction)
{
 Super::TickComponent(DeltaTime, TickType,
 ThisTickFunction);
 float CurrentValueInRadians =
 FMath::DegreesToRadians<float>(CurrentValue);
 SetRelativeLocation(
 FVector(OrbitDistance * FMath::Cos
 (CurrentValueInRadians),
 OrbitDistance * FMath::Sin(CurrentValueInRadians),
 RelativeLocation.Z));
 if (RotateToFaceOutwards)
 {
 FVector LookDir = (RelativeLocation).GetSafeNormal();
 FRotator LookAtRot = LookDir.Rotation();
 SetRelativeRotation(LookAtRot);
 }
 CurrentValue = FMath::Fmod(CurrentValue + (RotationSpeed*
 DeltaTime) ,360);
 //...
}

5. You can test this component by creating a simple Actor Blueprint.

6. Add an OrbitingMovement Component to your Actor, then add a few meshes
using the Cube component. Parent them to the OrbitingMovement component by
dragging them on to it in the Components panel. The resulting hierarchy should look
like the following:

Chapter 4

129

7. Refer to the Creating a custom Actor Component recipe if you're unsure of the
process.

8. Hit play to see the meshes moving around in a circular pattern around the center of
the Actor.

How it works...
1. The properties that are added to the component are the basic parameters that we

use to customize the circular motion of the component.

2. RotateToFaceOutwards specifies whether the component will orient to face away
from the center of rotation on every update. RotationSpeed is the number of
degrees the component rotates every second.

3. OrbitDistance indicates the distance that the components that rotate must be
moved from the origin. CurrentValue is the current rotation position in degrees.

4. Inside our constructor, we establish some sane defaults for our new
component.

5. In the TickComponent function, we calculate the location and rotation of
our component.

6. The formula in the next step requires our angles to be expressed in radians
rather than degrees. Radians describe an angle in terms of π. We first use the
DegreesToRadians function to convert our current value in degrees to radians.

7. The SetRelativeLocation function uses the general equation for circular
motion, that is—Pos(θ) = cos(θ in radians), sin(θ in radians). We preserve the Z axis
position of each object.

8. The next step is to rotate the object back towards the origin (or else, directly
away from it). This is only calculated if RotateToFaceOutwards is true, and
involves getting the relative offset of the component to its parent, and creating a
rotator based on a vector pointing from the parent to the current relative offset. We
then set the relative rotation to the resulting rotator.

9. Lastly, we increment the current value in degrees so that it moves RotationSpeed
units per second, clamping the resulting value between 0 and 360 to allow the
rotation to loop.

Creating a building that spawns units
For this recipe, we will create a building that spawns units at a fixed time interval at a
particular location.

Actors and Components

130

How to do it...
1. Create a new Actor subclass in the editor, as always, and then add the following

implementation to the class:
UPROPERTY()
UStaticMeshComponent* BuildingMesh;
UPROPERTY()
UParticleSystemComponent* SpawnPoint;

UPROPERTY()
UClass* UnitToSpawn;

UPROPERTY()
float SpawnInterval;

UFUNCTION()
void SpawnUnit();

UFUNCTION()
void EndPlay(const EEndPlayReason::Type EndPlayReason)
override;

UPROPERTY()
FTimerHandle SpawnTimerHandle;

2. Add the following to the constructor:
BuildingMesh =
CreateDefaultSubobject<UStaticMeshComponent>("BuildingMesh"
);
SpawnPoint =
CreateDefaultSubobject<UParticleSystemComponent>("SpawnPoin
t");
SpawnInterval = 10;
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 BuildingMesh->SetStaticMesh(MeshAsset.Object);
 BuildingMesh->SetCollisionProfileName(UCollisionProfile
 ::Pawn_ProfileName);

}
auto ParticleSystem =

Chapter 4

131

ConstructorHelpers::FObjectFinder<UParticleSystem>(TEXT("Pa
rticleSystem'/Engine/Tutorial/SubEditors/TutorialAssets/Tut
orialParticleSystem.TutorialParticleSystem'"));
if (ParticleSystem.Object != nullptr)
{
 SpawnPoint->SetTemplate(ParticleSystem.Object);
}
SpawnPoint->SetRelativeScale3D(FVector(0.5, 0.5, 0.5));
UnitToSpawn = ABarracksUnit::StaticClass();

3. Add the following to the BeginPlay function:
RootComponent = BuildingMesh;
SpawnPoint->AttachTo(RootComponent);
SpawnPoint->SetRelativeLocation(FVector(150, 0, 0));
GetWorld()->GetTimerManager().SetTimer(SpawnTimerHandle,
this, &ABarracks::SpawnUnit, SpawnInterval, true);

4. Create the implementation for the SpawnUnit function:
void ABarracks::SpawnUnit()
{
 FVector SpawnLocation = SpawnPoint
 ->GetComponentLocation();
 GetWorld()->SpawnActor(UnitToSpawn, &SpawnLocation);
}

5. Implement the overridden EndPlay function:
void ABarracks::EndPlay(const EEndPlayReason::Type
EndPlayReason)
{
 Super::EndPlay(EndPlayReason);
 GetWorld()
 ->GetTimerManager().ClearTimer(SpawnTimerHandle);
}

6. Next, create a new character subclass, and add one property:
UPROPERTY()
UParticleSystemComponent* VisualRepresentation;

7. Initialize the component in the constructor implementation:
VisualRepresentation =
CreateDefaultSubobject<UParticleSystemComponent>("SpawnPoin
t");
auto ParticleSystem =
ConstructorHelpers::FObjectFinder<UParticleSystem>(TEXT("Pa
rticleSystem'/Engine/Tutorial/SubEditors/TutorialAssets/Tut
orialParticleSystem.TutorialParticleSystem'"));

Actors and Components

132

if (ParticleSystem.Object != nullptr)
{
 SpawnPoint->SetTemplate(ParticleSystem.Object);
}
SpawnPoint->SetRelativeScale3D(FVector(0.5, 0.5, 0.5));
SpawnCollisionHandlingMethod =
ESpawnActorCollisionHandlingMethod::AlwaysSpawn;

8. Attach the visual representation to the root component:
void ABarracksUnit::BeginPlay()
{
 Super::BeginPlay();
 SpawnPoint->AttachTo(RootComponent);
}

9. Lastly, add the following to the Tick function to get the spawned actor
moving:
SetActorLocation(GetActorLocation() + FVector(10, 0, 0));

10. Verify against the following snippet, then compile your project. Place a copy of the
barracks actor into the level. You can then observe it spawning the character at fixed
intervals:

#pragma once
#include "GameFramework/Actor.h"
#include "Barracks.generated.h"
UCLASS()
class UE4COOKBOOK_API ABarracks : public AActor
{
 GENERATED_BODY()
 public:
 ABarracks();
 virtual void BeginPlay() override;
 virtual void Tick(float DeltaSeconds) override;

 UPROPERTY()
 UStaticMeshComponent* BuildingMesh;
 UPROPERTY()
 UParticleSystemComponent* SpawnPoint;

 UPROPERTY()
 UClass* UnitToSpawn;

 UPROPERTY()

Chapter 4

133

 float SpawnInterval;

 UFUNCTION()
 void SpawnUnit();
 UFUNCTION()
 void EndPlay(const EEndPlayReason::Type EndPlayReason)
 override;

 UPROPERTY()
 FTimerHandle SpawnTimerHandle;
};

#include "UE4Cookbook.h"
#include "BarracksUnit.h"
#include "Barracks.h"

// Sets default values
ABarracks::ABarracks()
{
 // Set this actor to call Tick() every frame. You can
 turn this off to improve performance
 if you don't need it.
 PrimaryActorTick.bCanEverTick = true;
 BuildingMesh =
 CreateDefaultSubobject<UStaticMeshComponent>
 ("BuildingMesh");
 SpawnPoint =
 CreateDefaultSubobject<UParticleSystemComponent>
 ("SpawnPoint");
 SpawnInterval = 10;
 auto MeshAsset =
 ConstructorHelpers::FObjectFinder<UStaticMesh>
 (TEXT("StaticMesh'/Engine/BasicShapes/Cube.Cube'"));
 if (MeshAsset.Object != nullptr)
 {
 BuildingMesh->SetStaticMesh(MeshAsset.Object);
 BuildingMesh->SetCollisionProfileName
 (UCollisionProfile::Pawn_ProfileName);

 }
 auto ParticleSystem =
 ConstructorHelpers::FObjectFinder<UParticleSystem>
 (TEXT("ParticleSystem'/Engine/Tutorial
 /SubEditors/TutorialAssets
 /TutorialParticleSystem.TutorialParticleSystem'"));
 if (ParticleSystem.Object != nullptr)

Actors and Components

134

 {
 SpawnPoint->SetTemplate(ParticleSystem.Object);
 }
 SpawnPoint->SetRelativeScale3D(FVector(0.5, 0.5, 0.5));
 UnitToSpawn = ABarracksUnit::StaticClass();
}
void ABarracks::BeginPlay()
{
 Super::BeginPlay();
 RootComponent = BuildingMesh;
 SpawnPoint->AttachTo(RootComponent);
 SpawnPoint->SetRelativeLocation(FVector(150, 0, 0));
 GetWorld()->GetTimerManager().SetTimer(SpawnTimerHandle,
 this, &ABarracks::SpawnUnit, SpawnInterval, true);
}

void ABarracks::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
}
void ABarracks::SpawnUnit()
{
 FVector SpawnLocation = SpawnPoint
 ->GetComponentLocation();
 GetWorld()->SpawnActor(UnitToSpawn, &SpawnLocation);
}

void ABarracks::EndPlay(const EEndPlayReason::Type
EndPlayReason)
{
 Super::EndPlay(EndPlayReason);
 GetWorld()
 ->GetTimerManager().ClearTimer(SpawnTimerHandle);
}

#pragma once

#include "GameFramework/Character.h"
#include "BarracksUnit.generated.h"

UCLASS()
class UE4COOKBOOK_API ABarracksUnit : public ACharacter
{
 GENERATED_BODY()

Chapter 4

135

 public:
 ABarracksUnit();

 virtual void BeginPlay() override;
 virtual void Tick(float DeltaSeconds) override;

 virtual void SetupPlayerInputComponent
 (class UInputComponent* InputComponent) override;

 UPROPERTY()
 UParticleSystemComponent* SpawnPoint;
};

#include "UE4Cookbook.h"
#include "BarracksUnit.h"

ABarracksUnit::ABarracksUnit()
{
 PrimaryActorTick.bCanEverTick = true;
 SpawnPoint =
 CreateDefaultSubobject<UParticleSystemComponent>
 ("SpawnPoint");
 auto ParticleSystem =
 ConstructorHelpers::FObjectFinder<UParticleSystem>
 (TEXT("ParticleSystem'/Engine/Tutorial
 /SubEditors/TutorialAssets/TutorialParticleSystem
 .TutorialParticleSystem'"));
 if (ParticleSystem.Object != nullptr)
 {
 SpawnPoint->SetTemplate(ParticleSystem.Object);
 }
 SpawnPoint->SetRelativeScale3D(FVector(0.5, 0.5, 0.5));
 SpawnCollisionHandlingMethod =
 ESpawnActorCollisionHandlingMethod::AlwaysSpawn;
}
void ABarracksUnit::BeginPlay()
{
 Super::BeginPlay();
 SpawnPoint->AttachTo(RootComponent);
}

void ABarracksUnit::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
 SetActorLocation(GetActorLocation() + FVector(10, 0, 0));

Actors and Components

136

}
void ABarracksUnit::SetupPlayerInputComponent(class
UInputComponent* InputComponent)
{
 Super::SetupPlayerInputComponent(InputComponent);
}

How it works...
1. Firstly, we create the barracks actor. We add a particle system component to indicate

where the new units will be spawning, and a static mesh for the visual representation
of the building.

2. In the constructor, we initialize the components, and then set their values using
FObjectFinder. We also set the class to spawn using the StaticClass function
to retrieve a UClass* instance from a class type.

3. In the BeginPlay function of the barracks, we create a timer that calls our
SpawnUnit function at fixed intervals. We store the timer handle in a member
variable in the class so that when our instance is being destroyed, we can halt the
timer; otherwise, when the timer triggers again, we'll encounter a crash where the
object pointer is dereferenced.

4. The SpawnUnit function gets the world space location of the SpawnPoint
object, then asks the world to spawn an instance of our unit class at that location.

5. BarracksUnit has code in its Tick() function to move forward by 10 units every
frame so that each spawned unit will move to make room for the next one.

6. The EndPlay function override calls the parent class implementation of the
function, which is important if there are timers to cancel or deinitialization performed
in the parent class. It then uses the timer handle stored in BeginPlay in order to
cancel the timer.

137

5
Handling Events and

Delegates

Unreal uses events for notifying classes about things that happen in the game world in an
efficient manner. Events and delegates are useful to ensure that these notifications can be
issued in a way which minimizes class coupling, and allows arbitrary classes to subscribe to
be notified.

We will cover the following recipes in this chapter:

 f Handling events implemented via virtual functions

 f Creating a delegate that is bound to a UFUNCTION

 f Unregistering a delegate

 f Creating a delegate that takes input parameters

 f Passing payload data with a delegate binding

 f Creating a multicast delegate

 f Creating a custom Event

 f Creating a Time of Day handler

 f Creating a respawning pickup for an First Person Shooter

Handling events implemented via virtual
functions

Some Actor and Component classes provided with Unreal include event handlers in the
form of virtual functions. This recipe will show you how to customize those handlers by
overriding the virtual function in question.

Handling Events and Delegates

138

How to do it...
1. Create an empty Actor in the Editor. Call it MyTriggerVolume.

2. Add the following code to the class header:
UPROPERTY()
UBoxComponent* TriggerZone;

UFUNCTION()
virtual void NotifyActorBeginOverlap(AActor* OtherActor)
override;
UFUNCTION()
virtual void NotifyActorEndOverlap(AActor* OtherActor)
override;

3. Add the implementation for the preceding functions to the cpp file:
void AMyTriggerVolume::NotifyActorBeginOverlap(AActor*
OtherActor)
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 FString::Printf(TEXT("%s entered me"),
 *(OtherActor->GetName())));
}

void AMyTriggerVolume::NotifyActorEndOverlap(AActor*
OtherActor)
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 FString::Printf(TEXT("%s left me"), *(OtherActor-
 >GetName())));
}

4. Compile your project, and place an instance of MyTriggerActor into the level.
Verify that overlap/touch events are handled by walking into the volume, and seeing
the output printed to the screen:

Chapter 5

139

How it works...
1. As always, we first declare a UPROPERTY to hold a reference to our component

subobject. We then create two UFUNCTION declarations. These are marked as
virtual and override so that the compiler understands we want to replace the
parent implementation, and that our function implementations can be replaced
in turn.

2. In the implementation of the functions, we use FString::printf to create an
FString from some preset text, and substitute some data parameters.

3. Note that the FString OtherActor->GetName() returns, and is dereferenced
using the * operator before being passed into FString::Format. Not doing this
results in an error.

4. This FString is then passed to a global engine function,
AddOnScreenDebugMessage.

5. The first argument of -1 tells the engine that duplicate strings are allowed, the
second parameter is the length of time the message should be displayed for in
seconds, the third argument is the color, and the fourth is the actual string to
print itself.

6. Now when a component of our actor overlaps something else, its UpdateOverlaps
function will call NotifyActorBeginOverlap, and the virtual function dispatch will
call our custom implementation.

Handling Events and Delegates

140

Creating a delegate that is bound to a
UFUNCTION

Delegates allow us to call a function without knowing which function is assigned. They are a
safer version of a raw function pointer. This recipe shows you how to associate a UFUNCTION
to a delegate so that it is called when the delegate is executed.

Getting ready
Ensure you've followed the previous recipe in order to create a TriggerVolume class.

How to do it...
1. Inside our GameMode header, declare the delegate with the following macro, just

before the class declaration:
DECLARE_DELEGATE(FStandardDelegateSignature)
UCLASS()
class UE4COOKBOOK_API AUE4CookbookGameMode : public
AGameMode

2. Add a new member to our game mode:
FStandardDelegateSignature MyStandardDelegate;

3. Create a new Actor class called DelegateListener. Add the following to the
declaration of that class:
UFUNCTION()
void EnableLight();

UPROPERTY()
UPointLightComponent* PointLight;

4. In the class implementation, add this to the constructor:
PointLight =
CreateDefaultSubobject<UPointLightComponent>("PointLight");
RootComponent = PointLight;
PointLight->SetVisibility(false);

Chapter 5

141

5. In the DelegateListener.cpp file, add #include "UE4CookbookGameMode.h"
between your project's include file and the DelegateListener header include.
Inside the DelegateListener::BeginPlay implementation, add the following:
Super::BeginPlay();
if (TheWorld != nullptr)
{
 AGameMode* GameMode =
 UGameplayStatics::GetGameMode(TheWorld);
 AUE4CookbookGameMode * MyGameMode =
 Cast<AUE4CookbookGameMode>(GameMode);
 if (MyGameMode != nullptr)
 {
 MyGameMode->MyStandardDelegate.BindUObject(this,
 &ADelegateListener::EnableLight);
 }
}

6. Lastly, implement EnableLight:
void ADelegateListener::EnableLight()
{
 PointLight->SetVisibility(true);
}

7. Put the following code in our TriggerVolume's NotifyActorBeginOverlap
function:
UWorld* TheWorld = GetWorld();
if (TheWorld != nullptr)
{
 AGameMode* GameMode =
 UGameplayStatics::GetGameMode(TheWorld);
 AUE4CookbookGameMode * MyGameMode =
 Cast<AUE4CookbookGameMode>(GameMode);
 MyGameMode->MyStandardDelegate.ExecuteIfBound();
}

8. Be sure to add #include "UE4CookbookGameMode.h" to your CPP file too so that
the compiler knows about the class before we use it.

Handling Events and Delegates

142

9. Compile your game. Make sure that your game mode is set in the current level (refer
to the Instantiating an Actor using SpawnActor recipe in Chapter 4, Actors and
Components if you don't know how), and drag a copy of your TriggerVolume out into
the level. Also, drag a copy of DelegateListener out into the level, and place it
about 100 units above a flat surface:

10. When you hit Play, and walk into the area covered by the Trigger volume, you should
see the PointLight component, which we added to DelegateListener, turn on:

Chapter 5

143

How it works...
1. Inside our GameMode header, we declare a type of delegate that doesn't take any

parameters, called FTriggerHitSignature.
2. We then create an instance of the delegate as a member of our GameMode class.
3. We add a PointLight component inside DelegateListener so that we have a

visual representation of the delegate being executed.
4. In the constructor, we initialize our PointLight, then disable it.
5. We override BeginPlay. We first call the parent class's implementation of

BeginPlay(). Then we get the game world, retrieving the GameMode class using
GetGameMode().

6. Casting the resulting AGameMode* to a pointer of our GameMode class requires the
use of the Cast template function.

7. We can then access the delegate instance member of the GameMode, and bind
our EnableLight function to the delegate, so it will be called when the delegate
is executed.

8. In this case, we are binding to UFUNCTION(), so we use BindUObject. If we wanted
to bind to a plain C++ class function, we would have used BindRaw. If we want to
bind to a static function, we will use BindStatic().

9. When TriggerVolume overlaps the player, it retrieves GameMode, then calls
ExecuteIfBound on the delegate.

10. ExecuteIfBound checks that there's a function bound to the delegate, and then
invokes it for us.

11. The EnableLight function enables the PointLight component when invoked by
the delegate object.

See also
 f The next section, Unregistering a delegate, shows you how to safely unregister your

delegate binding in the event of the Listener being destroyed before the delegate
is called

Unregistering a delegate
Sometimes, it is necessary to remove a delegate binding. This is like setting a function pointer
to nullptr so that it no longer references an object that has been deleted.

Getting ready
You'll need to follow the previous recipe in order for you to have a delegate to unregister.

Handling Events and Delegates

144

How to do it...
1. In DelegateListener, add the following overridden function declaration:

UFUNCTION()
virtual void EndPlay(constEEndPlayReason::Type
EndPlayReason) override;

2. Implement the function like this:
void ADelegateListener::EndPlay(constEEndPlayReason::Type
EndPlayReason)
{
 Super::EndPlay(EndPlayReason);
 UWorld* TheWorld = GetWorld();
 if (TheWorld != nullptr)
 {
 AGameMode* GameMode =
 UGameplayStatics::GetGameMode(TheWorld);
 AUE4CookbookGameMode * MyGameMode =
 Cast<AUE4CookbookGameMode>(GameMode);
 if (MyGameMode != nullptr)
 {
 MyGameMode->MyStandardDelegate.Unbind();
 }
 }
}

How it works...
1. This recipe combines both of the previous recipes in this chapter so far. We override

EndPlay, which is an event implemented as a virtual function, so that we can
execute code when our DelegateListener leaves play.

2. In that overridden implementation, we call the Unbind() method on the delegate,
which unlinks the member function from the DelegateListener instance.

3. Without this being done, the delegate dangles like a pointer, leaving it in an invalid
state when the DelegateListener leaves the game.

Creating a delegate that takes input
parameters

So far, the delegates that we've used haven't taken any input parameters. This recipe shows
you how to change the signature of the delegate so that it accepts some input.

Chapter 5

145

Getting ready
Be sure you've followed the recipe at the beginning of this chapter, which shows you how
to create a TriggerVolume and the other infrastructure that we require for this recipe.

How to do it...
1. Add a new delegate declaration to GameMode:

DECLARE_DELEGATE_OneParam(FParamDelegateSignature,
FLinearColor)

2. Add a new member to GameMode:
FParamDelegateSignatureMyParameterDelegate;

3. Create a new Actor class called ParamDelegateListener. Add the following to
the declaration:
UFUNCTION()
void SetLightColor(FLinearColorLightColor);
UPROPERTY()
UPointLightComponent* PointLight;

4. In the class implementation, add this to the constructor:
PointLight =
CreateDefaultSubobject<UPointLightComponent>("PointLight");
RootComponent = PointLight;

5. In the ParamDelegateListener.cpp file, add #include
"UE4CookbookGameMode.h" between your project's include file and the
ParamDelegateListener header include. Inside the ParamDelegateListener:
:BeginPlay implementation, add the following:
Super::BeginPlay();
UWorld* TheWorld = GetWorld();
if (TheWorld != nullptr)
{
 AGameMode* GameMode =
 UGameplayStatics::GetGameMode(TheWorld);
 AUE4CookbookGameMode * MyGameMode =
 Cast<AUE4CookbookGameMode>(GameMode);
 if (MyGameMode != nullptr)
 {
 MyGameMode->MyParameterDelegate.BindUObject(this,
 &AParamDelegateListener::SetLightColor);
 }
}

Handling Events and Delegates

146

6. Lastly, implement SetLightColor:
void AParamDelegateListener::SetLightColor
(FLinearColorLightColor)
{
 PointLight->SetLightColor(LightColor);
}

7. Inside our TriggerVolume, in NotifyActorBeginOverlap, add the following line
after the call to MyStandardDelegate.ExecuteIfBound:
MyGameMode
->MyParameterDelegate.ExecuteIfBound(FLinearColor(1, 0, 0,
1));

How it works...
1. Our new delegate signature uses a slightly different macro for declaration. Note the

_OneParam suffix at the end of DECLARE_DELEGATE_OneParam. As you'd expect,
we also need to specify what type our parameter will be.

2. Just like when we created a delegate without parameters, we need to create an
instance of the delegate as a member of our GameMode class.

3. We now create a new type of DelegateListener, one that is expecting a parameter
to be passed into the function that it binds to the delegate.

4. When we call the ExecuteIfBound() method for the delegate, we now need
to pass in the value that will be inserted into the function parameter.

5. Inside the function that we have bound, we use the parameter to set the color
of our light.

6. This means that TriggerVolume doesn't need to know anything about the
ParamDelegateListener in order to call functions on it. The delegate has
allowed us to minimize coupling between the two classes.

See also
 f The Unregistering a delegate recipe shows you how to safely unregister your delegate

binding in the event of the Listener being destroyed before the delegate is called

Passing payload data with a delegate binding
With only minimal changes, parameters can be passed through to a delegate at creation time.
This recipe shows you how to specify data to be always passed as parameters to a delegate
invocation. The data is calculated when the binding is created, and doesn't change from that
point forward.

Chapter 5

147

Getting ready
Be sure you've followed the previous recipe. We will be extending the functionality of the
previous recipe to pass additional creation-time parameters to our bound delegate function.

How to do it...
1. Inside your AParamDelegateListener::BeginPlay function, change the call to

BindUObject to the following:
MyGameMode->MyParameterDelegate.BindUObject(this,
&AParamDelegateListener::SetLightColor, false);

2. Change the declaration of SetLightColor to this:
void SetLightColor(FLinearColorLightColor, bool
EnableLight);

3. Alter the implementation of SetLightColor as follows:
void AParamDelegateListener::SetLightColor
(FLinearColorLightColor, bool EnableLight)
{
 PointLight->SetLightColor(LightColor);
 PointLight->SetVisibility(EnableLight);
}

4. Compile and run your project. Verify that when you walk into TriggerVolume, the
light turns off because of the false payload parameter passed in when you bound
the function.

How it works...
1. When we bind the function to the delegate, we specify some additional data (in

this case, a Boolean of value false). You can pass up to four 'payload' variables in
this fashion. They are applied to your function after any parameters declared in the
DECLARE_DELEGATE_* macro that you used.

2. We change the function signature of our delegate so that it can accept the extra
argument.

3. Inside the function, we use the extra argument to turn the light on or off depending
on the value being true or false at compile time.

4. We don't need to change the call to ExecuteIfBound—the delegate system
automatically applies the delegate parameters, passed in through ExecuteIfBound,
first. It then applies any payload parameters, which are always specified after the
function reference in a call to BindUObject.

Handling Events and Delegates

148

See also
 f The recipe Unregistering a delegate shows you how to safely unregister your delegate

binding in the event of the Listener being destroyed before the delegate is called

Creating a multicast delegate
The standard delegates used so far in this chapter are essentially a function pointer—they
allow you to call one particular function on one particular object instance. Multicast delegates
are a collection of function pointers, each potentially on different objects, that will all be
invoked when the delegate is broadcast.

Getting ready
This recipe assumes you have followed the initial recipe in the chapter, as it shows you how to
create TriggerVolume that is used to broadcast the multicast delegate.

How to do it...
1. Add a new delegate declaration to the GameMode header:

DECLARE_MULTICAST_DELEGATE(FMulticastDelegateSignature)

2. Create a new Actor class called MulticastDelegateListener. Add the following
to the declaration:
UFUNCTION()
void ToggleLight();
UFUNCTION()
virtual void EndPlay(constEEndPlayReason::Type EndPlayReason)
override;

UPROPERTY()
UPointLightComponent* PointLight;

FDelegateHandleMyDelegateHandle;

3. In the class implementation, add this to the constructor:
PointLight =
CreateDefaultSubobject<UPointLightComponent>("PointLight");
RootComponent = PointLight;

Chapter 5

149

4. In the MulticastDelegateListener.cpp file, add #include
"UE4CookbookGameMode.h" between your project's include file and the
MulticastDelegateListener header include. Inside the MulticastDelegateL
istener::BeginPlay implementation, add the following:
Super::BeginPlay();
UWorld* TheWorld = GetWorld();
if (TheWorld != nullptr)
{
 AGameMode* GameMode =
 UGameplayStatics::GetGameMode(TheWorld);
 AUE4CookbookGameMode * MyGameMode =
 Cast<AUE4CookbookGameMode>(GameMode);
 if (MyGameMode != nullptr)
 {
 MyDelegateHandle = MyGameMode-
 >MyMulticastDelegate.AddUObject(this,
 &AMulticastDelegateListener::ToggleLight);
 }
}

5. Implement ToggleLight:
void AMulticastDelegateListener::ToggleLight()
{
 PointLight->ToggleVisibility();
}

6. Implement our EndPlay overridden function:
void AMulticastDelegateListener::EndPlay
(constEEndPlayReason::Type EndPlayReason)
{
 Super::EndPlay(EndPlayReason);
 UWorld* TheWorld = GetWorld();
 if (TheWorld != nullptr)
 {
 AGameMode* GameMode =
 UGameplayStatics::GetGameMode(TheWorld);
 AUE4CookbookGameMode * MyGameMode =
 Cast<AUE4CookbookGameMode>(GameMode);
 if (MyGameMode != nullptr)
 {
 MyGameMode-
 >MyMulticastDelegate.Remove(MyDelegateHandle);
 }
 }
}

Handling Events and Delegates

150

7. Add the following line to TriggerVolume::NotifyActorBeginOverlap():
MyGameMode->MyMulticastDelegate.Broadcast();

8. Compile and load your project. Set the GameMode in your level to be our cookbook
game mode, then drag four or five instances of the MulticastDelegateListener
into the scene.

9. Step into TriggerVolume to see all the MulticastDelegateListener toggle
their light's visibility.

How it works...
1. As you might expect, the delegate type needs to be explicitly declared as a multicast

delegate rather than a standard single-binding one.

2. Our new Listener class is very similar to our original DelegateListener. The
primary difference is that we need to store a reference to our delegate instance in
FDelegateHandle.

3. When the actor is destroyed, we safely remove ourselves from the list of functions
bound to the delegate by using the stored FDelegateHandle as a parameter
to Remove().

4. The Broadcast() function is the multicast equivalent of ExecuteIfBound().
Unlike standard delegates, there is no need to check if the delegate is bound either in
advance or with a call like ExecuteIfBound. Broadcast() is safe to run no matter
how many functions are bound, or even if none are.

5. When we have multiple instances of our multicast listener in the scene, they each
register themselves with the multicast delegate implemented in the GameMode.

6. Then, when the TriggerVolume overlaps a player, it broadcasts the delegate,
and each Listener is notified causing them to toggle the visibility of their associated
point light.

7. Multicast delegates can take parameters in exactly the same way that a standard
delegate can.

Creating a custom Event
Custom delegates are quite useful, but one of their limitations is that they can be broadcast
externally by some other third-party class, that is, their Execute/Broadcast methods are
publically accessible.

At times, you may want a delegate that is externally assignable by other classes, but can only
be broadcast by the class which contains them. This is the primary purpose of Events.

Chapter 5

151

Getting ready
Make sure you've followed the initial recipe in this chapter so that you have the
MyTriggerVolume and CookBookGameMode implementations.

How to do it...
1. Add the following event declaration macro to the header of your MyTriggerVolume

class:
DECLARE_EVENT(AMyTriggerVolume, FPlayerEntered)

2. Add an instance of the declared event signature to the class:
FPlayerEnteredOnPlayerEntered;

3. In AMyTriggerVolume::NotifyActorBeginOverlap, add this:
OnPlayerEntered.Broadcast();

4. Create a new Actor class, called TriggerVolEventListener.

5. Add the following class members to its declaration:
UPROPERTY()
UPointLightComponent* PointLight;

UPROPERTY(EditAnywhere)
AMyTriggerVolume* TriggerEventSource;
UFUNCTION()
void OnTriggerEvent();

6. Initialize PointLight in the class constructor:
PointLight =
CreateDefaultSubobject<UPointLightComponent>("PointLight");
RootComponent = PointLight;

7. Inside BeginPlay, add the following:
if (TriggerEventSource != nullptr)
{
 TriggerEventSource->OnPlayerEntered.AddUObject(this,
 &ATriggerVolEventListener::OnTriggerEvent);
}

8. Lastly, implement OnTriggerEvent():
void ATriggerVolEventListener::OnTriggerEvent()
{
 PointLight->SetLightColor(FLinearColor(0, 1, 0, 1));
}

Handling Events and Delegates

152

9. Compile your project, and launch the editor. Create a level with the game
mode set to our UE4CookbookGameMode, then drag an instance of
ATriggerVolEventListener and AMyTriggerVolume out into the level.

10. Select TriggerVolEventListener, and you'll see TriggerVolEventListener
listed as a category in the Details panel, with the property Trigger Event Source:

11. Use the drop-down menu to select your instance of AMyTriggerVolume so that the
Listener knows which event to bind to:

12. Play your game, and enter the trigger volume's zone of effect. Verify that the color of
your EventListener changes to green.

How it works...
1. As with all the other types of delegates, Events require their own special macro

function.

2. The first parameter is the class that the event will be implemented into. This will be
the only class able to call Broadcast(), so make sure it is the right one.

Chapter 5

153

3. The second parameter is the type name for our new event function signature.

4. We add an instance of this type to our class. Unreal documentation suggests On<x>
as a naming convention.

5. When something overlaps our TriggerVolume, we call broadcast on our own event
instance.

6. Inside the new class, we create a point light as a visual representation of the event
being triggered.

7. We also create a pointer to TriggerVolume to listen to events from. We mark the
UPROPERTY as EditAnywhere, because this allows us to set it in the Editor rather
than having to acquire the reference programmatically using GetAllActorsOfClass
or something else.

8. Last is our event handler for when something enters the TriggerVolume.

9. We create and initialize our point light in the constructor as usual.

10. When the game starts, the Listener checks that our TriggerVolume reference is
valid, then binds our OnTriggerEvent function to the TriggerVolume event.

11. Inside OnTriggerEvent, we change our light's color to green.

12. When something enters TriggerVolume, it causes TriggerVolume to call
broadcast on its own event. Our TriggerVolEventListener then has its
bound method invoked, changing our light's color.

Creating a Time of Day handler
This recipe shows you how to use the concepts introduced in the previous recipes to create an
actor that informs other actors of the passage of time within your game.

How to do it...
1. Create a new Actor class called TimeOfDayHandler.

2. Add a multicast delegate declaration to the header:
DECLARE_MULTICAST_DELEGATE_TwoParams(FOnTimeChangedSignatur
e, int32, int32)

3. Add an instance of our delegate to the class declaration:
FOnTimeChangedSignatureOnTimeChanged;

Handling Events and Delegates

154

4. Add the following properties to the class:
UPROPERTY()
int32 TimeScale;

UPROPERTY()
int32 Hours;
UPROPERTY()
int32 Minutes;

UPROPERTY()
float ElapsedSeconds;

5. Add the initialization of these properties to the constructor:
TimeScale = 60;
Hours = 0;
Minutes = 0;
ElapsedSeconds = 0;

6. Inside Tick, add the following code:
ElapsedSeconds += (DeltaTime * TimeScale);
if (ElapsedSeconds> 60)
{
 ElapsedSeconds -= 60;
 Minutes++;
 if (Minutes > 60)
 {
 Minutes -= 60;
 Hours++;
 }

 OnTimeChanged.Broadcast(Hours, Minutes);
}

7. Create a new Actor class called Clock.

8. Add the following properties to the class header:
UPROPERTY()
USceneComponent* RootSceneComponent;

UPROPERTY()
UStaticMeshComponent* ClockFace;
UPROPERTY()
USceneComponent* HourHandle;
UPROPERTY()
UStaticMeshComponent* HourHand;

Chapter 5

155

UPROPERTY()
USceneComponent* MinuteHandle;
UPROPERTY()
UStaticMeshComponent* MinuteHand;

UFUNCTION()
void TimeChanged(int32 Hours, int32 Minutes);
FDelegateHandleMyDelegateHandle;

9. Initialize and transform the components in the constructor:
RootSceneComponent = CreateDefaultSubobject<USceneComponent>("Root
SceneComponent
");
ClockFace =
CreateDefaultSubobject<UStaticMeshComponent>("ClockFace");
HourHand =
CreateDefaultSubobject<UStaticMeshComponent>("HourHand");
MinuteHand =
CreateDefaultSubobject<UStaticMeshComponent>("MinuteHand");
HourHandle =
CreateDefaultSubobject<USceneComponent>("HourHandle");
MinuteHandle =
CreateDefaultSubobject<USceneComponent>("MinuteHandle");
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cylinder.Cylinder'"));
if (MeshAsset.Object != nullptr)
{
 ClockFace->SetStaticMesh(MeshAsset.Object);
 HourHand->SetStaticMesh(MeshAsset.Object);
 MinuteHand->SetStaticMesh(MeshAsset.Object);
}
RootComponent = RootSceneComponent;
HourHand->AttachTo(HourHandle);
MinuteHand->AttachTo(MinuteHandle);
HourHandle->AttachTo(RootSceneComponent);
MinuteHandle->AttachTo(RootSceneComponent);
ClockFace->AttachTo(RootSceneComponent);
ClockFace->SetRelativeTransform(FTransform(FRotator(90, 0,
0), FVector(10, 0, 0), FVector(2, 2, 0.1)));
HourHand->SetRelativeTransform(FTransform(FRotator(0, 0,
0), FVector(0, 0, 25), FVector(0.1, 0.1, 0.5)));
MinuteHand->SetRelativeTransform(FTransform(FRotator(0, 0,
0), FVector(0, 0, 50), FVector(0.1, 0.1, 1)));

Handling Events and Delegates

156

10. Add the following to BeginPlay:
TArray<AActor*>TimeOfDayHandlers;
UGameplayStatics::GetAllActorsOfClass(GetWorld(),
ATimeOfDayHandler::StaticClass(), TimeOfDayHandlers);
if (TimeOfDayHandlers.Num() != 0)
{
 auto TimeOfDayHandler =
 Cast<ATimeOfDayHandler>(TimeOfDayHandlers[0]);
 MyDelegateHandle = TimeOfDayHandler-
 >OnTimeChanged.AddUObject(this, &AClock::TimeChanged);
}

11. Lastly, implement TimeChanged as your event handler.
void AClock::TimeChanged(int32 Hours, int32 Minutes)
{
 HourHandle->SetRelativeRotation(FRotator(0, 0,30 *
 Hours));
 MinuteHandle->SetRelativeRotation(FRotator(0,0,6 *
 Minutes));
}

12. Place an instance of TimeOfDayHandler and the AClock into your level, and play
to see that the hands on the clock are rotating:

Chapter 5

157

How it works...
1. TimeOfDayHandler contains a delegate which takes two parameters, hence the

use of the TwoParams variant of the macro.

2. Our class contains variables to store hours, minutes, and seconds, and the
TimeScale, which is an acceleration factor used to speed up time for testing
purposes.

3. Inside the handler's Tick function, we accumulate elapsed seconds based
on the time elapsed since the last frame.

4. We check if the elapsed seconds have gone over 60. If so, we subtract 60,
and increment Minutes.

5. Likewise with Minutes—if they go over 60, we subtract 60, and increment
Hours.

6. If Minutes and Hours were updated, we broadcast our delegate to let any object
that has subscribed to the delegate know that the time has changed.

7. The Clock actor uses a series of Scene components and Static meshes to
build a mesh hierarchy that resembles a clock face.

8. In the Clock constructor, we parent the components in the hierarchy, and
set their initial scale and rotations.

9. In BeginPlay, the clock uses GetAllActorsOfClass() to fetch all the
time of day handlers in the level.

10. If there's at least one TimeOfDayHandler in the level, the Clock accesses the first
one, and subscribes to its TimeChanged event.

11. When the TimeChanged event fires, the clock rotates the hour and minute hands
based on how many hours and minutes the time currently has.

Creating a respawning pickup for an First
Person Shooter

This recipe shows you how to create a placeable pickup that will respawn after a certain
amount of time, suitable as an ammo or other pickup for an FPS.

How to do it...
1. Create a new Actor class called Pickup.

2. Declare the following delegate type in Pickup.h:
DECLARE_DELEGATE(FPickedupEventSignature)

Handling Events and Delegates

158

3. Add the following properties to the class header:
virtual void NotifyActorBeginOverlap(AActor* OtherActor) override;
UPROPERTY()
UStaticMeshComponent* MyMesh;

UPROPERTY()
URotatingMovementComponent* RotatingComponent;

FPickedupEventSignatureOnPickedUp;

4. Add the following code to the constructor:
MyMesh =
CreateDefaultSubobject<UStaticMeshComponent>("MyMesh");
RotatingComponent =
CreateDefaultSubobject<URotatingMovementComponent>("Rotatin
gComponent");
RootComponent = MyMesh;
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 MyMesh->SetStaticMesh(MeshAsset.Object);
}
MyMesh->SetCollisionProfileName(TEXT("OverlapAllDynamic"));
RotatingComponent->RotationRate = FRotator(10, 0, 10);

5. Implement the overridden NotifyActorBeginOverlap:
void APickup::NotifyActorBeginOverlap(AActor* OtherActor)
{
 OnPickedUp.ExecuteIfBound();
}

6. Create a second Actor class called PickupSpawner.

7. Add the following to the class header:
UPROPERTY()
USceneComponent* SpawnLocation;

UFUNCTION()
void PickupCollected();
UFUNCTION()
void SpawnPickup();

Chapter 5

159

UPROPERTY()
APickup* CurrentPickup;
FTimerHandleMyTimer;

8. Add Pickup.h to the includes in the PickupSpawner implementation file.

9. Initialize our root component in the constructor:
SpawnLocation =
CreateDefaultSubobject<USceneComponent>("SpawnLocation");

10. Spawn a pickup when gameplay starts with the SpawnPickup function in
BeginPlay:
SpawnPickup();

11. Implement PickupCollected:
void APickupSpawner::PickupCollected()
{
 GetWorld()->GetTimerManager().SetTimer(MyTimer, this,
 &APickupSpawner::SpawnPickup, 10, false);
 CurrentPickup->OnPickedUp.Unbind();
 CurrentPickup->Destroy();
}

12. Create the following code for SpawnPickup:
void APickupSpawner::SpawnPickup()
{
 UWorld* MyWorld = GetWorld();
 if (MyWorld != nullptr){
 CurrentPickup = MyWorld->
 SpawnActor<APickup>(APickup::StaticClass(),
 GetTransform());
 CurrentPickup->OnPickedUp.BindUObject(this,
 &APickupSpawner::PickupCollected);
 }
}

Handling Events and Delegates

160

13. Compile and launch the editor, then drag an instance of PickupSpawner out into
the level. Walk into the pickup represented by the spinning cube, and verify that it
spawns again 10 seconds later:

How it works...
1. As usual, we need to create a delegate inside our Pickup that our Spawner can

subscribe to so that it knows when the player collects the pickup.

2. The Pickup also contains a Static mesh as a visual representation, and a
RotatingMovementComponent so that the mesh will spin in a way to attract
the attention of the players.

3. Inside the Pickup constructor, we load one of the engine's inbuilt meshes
as our visual representation.

4. We specify that the mesh will overlap with other objects, then set the rotation rate
of our mesh at 10 units per second in the X and Z axes.

5. When the player overlaps the Pickup, it fires off its PickedUp delegate
from the first step.

6. The PickupSpawner has a Scene component to specify where to spawn the pickup
actor. It has a function for doing so, and a UPROPERTY-tagged reference to the
currently spawned Pickup.

7. In the PickupSpawner constructor, we initialize our components as always.

8. When play begins, the Spawner runs its SpawnPickup function.

9. This function spawns an instance of our Pickup, then binds
APickupSpawner::PickupCollected to the OnPickedUp function
on the new instance. It also stores a reference to that current instance.

Chapter 5

161

10. When PickupCollected runs after the player has overlapped the Pickup, a timer
is created to respawn the pickup after 10 seconds.

11. The existing delegate binding to the collected pickup is removed, then the pickup
is destroyed.

12. After 10 seconds, the timer fires, running SpawnActor again, which creates a
new Pickup.

163

6
Input and Collision

This chapter covers recipes surrounding game control input (keyboard, mouse, and gamepad),
and collisions with obstacles.

The following recipes will be covered in this chapter:

 f Axis Mappings – keyboard, mouse, and gamepad directional input for an FPS
character

 f Axis Mappings – normalized input

 f Action Mappings – one-button responses for an FPS character

 f Adding Axis and Action Mappings from C++

 f Mouse UI input handling

 f UMG keyboard UI shortcut keys

 f Collision – letting objects pass through one another using Ignore

 f Collision – picking up objects using Overlap

 f Collision – preventing interpenetration using Block

Introduction
Good input controls are extremely important in your game. Providing all of keyboard, mouse,
and especially gamepad input is going to make your game much more palatable to users.

Input and Collision

164

 You can use Xbox 360 and PlayStation controllers on your
Windows PC—they have USB input. Check your local electronics shops
for USB game controllers in order to find some good ones. You can also
use a wireless controller with a game controller wireless receiver adapter
connected to your PC.

Axis Mappings – keyboard, mouse and
gamepad directional input for an FPS
character

There are two types of input mapping: Axis mappings and Action mappings. Axis mappings
are inputs that you hold down for an extended period of time to get their effect (for example,
holding the W key to move the player forward), while Action mappings are one-off inputs (such
as pressing the A key on the gamepad to make the player jump). In this recipe, we'll cover
how to set up keyboard, mouse, and gamepad axis-mapped input controls to move an
FPS character.

Getting ready
You must have a UE4 project, which has a main character player in it, and a ground plane to
walk on, ready for this recipe.

How to do it...
1. Create a C++ class, Warrior, deriving from Character:

UCLASS()
class CH6_API AWarrior : public ACharacter
{
 GENERATED_BODY()
};

2. Launch UE4, and derive a Blueprint, BP_Warrior, based on your Warrior class.

3. Create and select a new Blueprint for your GameMode class as follows:

1. Go to Settings | Project Settings | Maps & Modes.

2. Click on the + icon beside the default GameMode drop-down menu, which
will create a new Blueprint of the GameMode class, and name of your choice
(say, BP_GameMode).

3. Double-click the new BP_GameMode Blueprint class that you have created
to edit it.

Chapter 6

165

4. Open your BP_GameMode blueprint, and select your Blueprinted BP_Warrior class
as default Pawn Class.

5. To set up the keyboard's input driving the player, open Settings | Project Settings
| Input. In the following steps, we will complete the process that drives the player
forward in the game:

1. Click on the + icon beside the Axis Mappings heading.

Axis Mappings supports continuous (button-held) input, while
Action Mappings supports one-off events.

2. Give a name to the Axis mapping. This first example will show how to move
the player forward, so name it something like Forward.

3. Underneath Forward, select a keyboard key to assign to this Axis mapping,
such as W.

4. Click on the + icon beside Forward, and select a game controller input to
map to moving the player Forward (such as gamepad Left Thumbstick Up).

5. Complete Axis Mappings for Back, Left, and Right with keyboard, gamepad,
and, optionally, mouse input bindings for each.

6. From your C++ code, override the SetupPlayerInputComponent function for the
AWarrior class as follows:
void AWarrior::SetupPlayerInputComponent(UInputComponent* Input)
{
 check(Input);
 Input->BindAxis("Forward", this, &AWarrior::Forward);
}

7. Provide a Forward function inside your AWarrior class as follows:
void AWarrior::Forward(float amount)
{
 if(Controller && amount)
 {
 // Moves the player forward by an amount in forward
 direction
 AddMovementInput(GetActorForwardVector(), amount);
 }
}

8. Write and complete functions for the rest of the input directions, AWarrior::Back,
AWarrior::Left, and AWarrior::Right.

Input and Collision

166

How it works…
The UE4 Engine allows wire-up input events directly to C++ function calls. The function called
by an input event are member functions of some class. In the preceding example, we routed
both the pressing of the W key and holding of the gamepad's Left Thumbstick Up to the
AWarrior::Forward C++ function. The instance to call AWarrior::Forward on is the
instance that routed the controller's input. That is controlled by the object set as the player's
avatar in the GameMode class.

See also
 f Instead of entering the Forward input axis binding in the UE4 editor, you can actually

code it in from C++. We'll describe this in detail in a later recipe, Adding Axis and
Action Mappings from C++.

Axis Mappings – normalized input
If you've noticed, inputs of 1.0 right and 1.0 forward will actually sum to a total of 2.0 units of
speed. This means it is possible to move faster diagonally than it is to move in purely forward,
backward, left, or right directions. What we really should do is clamp off any input value that
results in speed in excess of 1.0 units while maintaining the direction of input indicated. We
can do this by storing the previous input values, and overriding the ::Tick() function.

Getting ready
Open a project, and set up a Character derivative class (let's call ours Warrior).

How to do it…
1. Override the AWarrior::SetupPlayerInputComponent(UInputComponent*

Input) function as follows:
void AWarrior::SetupPlayerInputComponent(UInputComponent* Input)
{
 Input->BindAxis("Forward", this, &AWarrior::Forward);
 Input->BindAxis("Back", this, &AWarrior::Back);
 Input->BindAxis("Right", this, &AWarrior::Right);
 Input->BindAxis("Left", this, &AWarrior::Left);
}

Chapter 6

167

2. Write the corresponding ::Forward, ::Back, ::Right and ::Left functions as
follows:
void AWarrior::Forward(float amount) {
 // We use a += of the amount added so that
 // when the other function modifying .Y
 // (::Back()) affects lastInput, it won't
 // overwrite with 0's
 lastInput.Y += amount;
}
void AWarrior::Back(float amount) {
 lastInput.Y += -amount;
}
void AWarrior::Right(float amount) {
 lastInput.X += amount;
}
void AWarrior::Left(float amount) {
 lastInput.X += -amount;
}

3. In the AWarrior::Tick() function, modify the input values after normalizing any
oversize in the input vector:
void AWarrior::Tick(float DeltaTime) {
 Super::Tick(DeltaTime);
 if(Controller)
 {
 float len = lastInput.Size();
 if(len > 1.f)
 lastInput /= len;
 AddMovementInput(
 GetActorForwardVector(), lastInput.Y);
 AddMovementInput(GetActorRightVector(), lastInput.X);
 // Zero off last input values
 lastInput = FVector2D(0.f, 0.f);
 }
}

How it works...
We normalize the input vector when it is over a magnitude of 1.0. This constricts the
maximum input velocity to 1.0 units (rather than 2.0 units when full up and full right
are pressed, for example).

Input and Collision

168

Action Mappings – one button responses for
an FPS character

An Action mapping is for handling single-button pushes (not buttons that are held down).
For buttons that should be held down, be sure to use an Axis mapping instead.

Getting ready
Have a UE4 project ready with the actions that you need to complete, such as Jump
or ShootGun.

How to do it...
1. Open Settings | Project Settings | Input.

2. Go to the Action Mappings heading, and click on the + icon beside it.

1. Start to type in the actions that should be mapped to button pushes.
For example, type in Jump for the first Action.

2. Select a key to press for that action to occur, for example, Space Bar.

3. If you would like the same action triggered by another key push, click on
the + beside your Action Mappings name, and select another key to trigger
the Action.

4. If you want that the Shift, Ctrl, Alt, or Cmd keys should be held down for the
Action to occur, be sure to indicate that in the checkboxes to the right of the
key selection box.

3. To link your Action to a C++ code function, you need to override the SetupPlayerIn
putComponent(UInputControl* control) function. Enter the following code
inside that function:

voidAWarrior::SetupPlayerInputComponent(UInputComponent*
Input)
{
 check(Input);
 // Connect the Jump action to the C++ Jump function

Chapter 6

169

 Input->BindAction("Jump", IE_Pressed, this,
 &AWarrior::Jump);
}

How it works…
Action Mappings are single-button-push events that fire off C++ code to run in response to
them. You can define any number of actions that you wish in the UE4 Editor, but be sure to
tie up Action Mappings to actual key pushes in C++.

See also
 f You can list the Actions that you want mapped from C++ code. See the following

recipe on Adding Axis and Action Mappings from C++ for this.

Adding Axis and Action Mappings from C++
Axis Mappings and Action Mappings can be added to your game via the UE4 Editor, but we
can also add them directly from C++ code. Since the wireup to C++ functions is from C++ code
anyway, you may find it convenient to define your Axis and Action Mappings in C++ as well.

Getting ready
You need a UE4 project to which you'd like to add some Axis and Action mappings. You can
delete the existing Axis and Action mappings listed in Settings | Project Settings | Input if
you are adding them via C++ code. To add your custom axis and action mappings, there are
two C++ functions that you need to know about: the UPlayerInput::AddAxisMapping
and UPlayerInput:: AddActionMapping. These are member functions available on the
UPlayerInput object. The UPlayerInput object is inside the PlayerController object,
accessible via the following code:

GetWorld()->GetFirstPlayerController()->PlayerInput

You can also use the two static member functions of UPlayerInput to create your axis and
action mappings if you'd prefer not to access player controllers individually:

UPlayerInput::AddEngineDefinedAxisMapping()
UPlayerInput::AddEngineDefinedActionMapping()

Input and Collision

170

How to do it...
1. To begin with, we need to define our FInputAxisKeyMapping or

FInputActionKeyMapping objects, depending on whether you are hooking up an
Axis key mapping (for buttons that are held down for input) or an Action key mapping
(for one-off events—buttons that are pressed once for input).

1. For Axis key mappings, we define an FInputAxisKeyMapping object,
as follows:
FInputAxisKeyMapping backKey("Back", EKeys::S, 1.f);

2. This will include the string name for the action, the key to press (use the
EKeys enum), and whether or not Shift, Ctrl, Alt, or cmd (Mac) should be
held to trigger the event.

3. For action key mappings, define FInputActionKeyMapping, as follows:
FInputActionKeyMapping jump("Jump", EKeys::SpaceBar, 0, 0,
0, 0);

4. This will include the string name for the action, the key to press, and whether
or not Shift, Ctrl, Alt, or cmd (Mac) should be held to trigger the event.

2. In your player Pawn class SetupPlayerInputComponent function, register your
axis and action key mappings to the following:

1. The PlayerInput object connected to a specific controller:
GetWorld()->GetFirstPlayerController()->PlayerInput
->AddAxisMapping(backKey); // specific to a controller

2. Or, alternatively, you could register to the static member functions of the
UPlayerInput object directly:
UPlayerInput::AddEngineDefinedActionMapping(jump);

Be sure you're using the correct function for Axis
versus Action mappings!

3. Register your Action and Axis mappings to C++ functions using C++ code just as
shown in the preceding two recipes, for example:
Input->BindAxis("Back", this, &AWarrior::Back);
Input->BindAction("Jump", IE_Pressed, this, &AWarrior::Jump
);

Chapter 6

171

How it works…
The action and axis mapping registration functions allow you to set up your input mappings
from C++ code directly. The C++ coded input mappings are essentially the same as entering
the input mappings in the Settings | Project Settings | Input dialog.

Mouse UI input handling
When using the Unreal Motion Graphics (UMG) toolkit, you will find that mouse events are
very easy to handle. We can register C++ functions to run after mouse clicks or other types
of interactions with the UMG components.

Usually, event registration will be via Blueprints; but in this recipe, we will outline how to write
and wire-up C++ functions to UMG events.

Getting ready
Create a UMG canvas in your UE4 project. From there, we'll register event handlers for the
OnClicked, OnPressed, and OnReleased events.

How to do it...
1. Right-click in your Content Browser (or click on Add New), and select User Interface

| Widget Blueprint, as shown in the following screenshot. This will add an editable
widget blueprint to your project.

2. Double-click on your Widget Blueprint to edit it.

3. Add a button to the interface by dragging it from the palette on the left.

4. Scroll down the Details panel for your button until you find the Events subsection.

Input and Collision

172

5. Click on the + icon beside any event that you'd like to handle.

6. Connect the event that appears in Blueprints to any C++ UFUNCTION() that has
the BlueprintCallable tag in the macro. For example, in your GameMode class
derivative, you could include a function such as:
UFUNCTION(BlueprintCallable, Category = UIFuncs)
void ButtonClicked()
{
 UE_LOG(LogTemp, Warning, TEXT("UI Button Clicked"));
}

7. Trigger the function call by routing to it in the Blueprints diagram under the event of
your choice.

8. Construct and display your UI by calling Create Widget, followed by Add to Viewport
in the Begin Play function of your GameMode (or any such main object).

How it works…
Your widget Blueprint's buttons events can be easily connected to Blueprints events, or C++
functions via the preceding method.

UMG keyboard UI shortcut keys
Every user interface needs shortcut keys associated with it. To program these into your UMG
interface, you can simply wire-up certain key combinations to an Action mapping. When the
Action triggers, just invoke the same Blueprints function that the UI button itself triggers.

Getting ready
You should have a UMG interface created already, as shown in the previous recipe.

Chapter 6

173

How to do it...
1. In Settings | Project Settings | Input, define a new Action mapping for your hot key

event, for example, HotKey_UIButton_Spell.

2. Wire up the event to your UI's function call either in Blueprints or in C++ code.

How it works…
Wiring up an Action Mapping with a short circuit to the function called by the UI will allow you
to implement hot keys in your game program nicely.

Collision – letting objects pass through one
another using Ignore

Collision settings are fairly easy to get hold of. There are three classes of intersection for
collisions:

 f Ignore: Collisions that pass through each other without any notification.

 f Overlap: Collisions that trigger the OnBeginOverlap and OnEndOverlap events.
Interpenetration of objects with an Overlap setting is allowed.

 f Block: Collisions that prevent all interpenetration, and prevent objects from
overlapping each other at all.

Objects are classed into one of many Object Type. The Collision settings for a particular
Blueprint's Component allow you to class the object as an Object Type of your choice as well
as to specify how that object collides with all other objects of all other types. This takes a
tabular format in the Details | Collision section of the Blueprint Editor.

Input and Collision

174

For example, the following screenshot shows the Collision settings for a character's
CapsuleComponent:

Getting ready
You should have a UE4 project with some objects that you'd like to program intersections for.

How to do it...
1. Open the Blueprint editor for the object that you'd like other objects to simply pass

through and ignore. Under the Components listing, select the component that you'd
like to program settings for.

2. With your component selected, see your Details tab (usually on the right). Under
Collision Presets, select either the NoCollision or Custom… presets.

1. If you select the NoCollision preset, you can just leave it at that, and all
collisions will be ignored.

Chapter 6

175

2. If you select the Custom… preset, then choose either of the following:

1. NoCollision under the Collision Enabled drop-down menu.

2. Select a collision mode under Collision Enabled involving Queries, and
be sure to check the Ignore checkbox for each Object Type that you'd
like it to ignore collisions with.

How it works…
Ignored collisions will not fire any events or prevent interpenetrations between objects marked
as such.

Collision – picking up objects using Overlap
Item pickup is a pretty important thing to get down cleanly. In this recipe, we'll outline how to
get item pickups working using Overlap events on Actor Component primitives.

Getting ready
The previous recipe, Collisions: Letting Objects pass through each other using Ignore,
describes the basics of collisions. You should read it for background before beginning this
recipe. What we'll do here is create a New Object Channel... to identify Item class objects so
that they can be programmed for overlaps only with the player avatar's collision volume.

How to do it...
1. Start by creating a unique collision Channel for the Item object's collision primitive.

Under Project Settings | Collision, create a new Object Channel by going to New
Object Channel…

Input and Collision

176

2. Name the new Object Channel as Item.

3. Take your Item actor and select the primitive component on it that is used to
intersect for pickup with the player avatar. Make the Object Type of that primitive
an Item class Object Type.

4. Check the Overlap checkbox against the Pawn class Object Type as shown in the
following screenshot:

5. Ensure that the Generate Overlap Events checkbox is checked.

6. Take the player actor who will pick up the items, and select the component on him
that feels for the items. Usually, this will be his CapsuleComponent. Check Overlap
with the Item object.

7. Now the Player overlaps the item, and the item overlaps the player pawn. We do have
to signal overlaps it both ways (Item Overlaps Pawn and Pawn Overlaps Item) for it
to work properly. Ensure that Generate Overlap Events is also checked for the Pawn
intersecting component.

Chapter 6

177

8. Next we have to complete the OnComponentBeginOverlap event for either the
item or the Player's pickup volume, using either Blueprints or C++ code.

1. If you prefer Blueprints, in the Events section of the Details pane of
the Coin's intersectable Component, click on the + icon beside the On
Component Begin Overlap event.

2. Use the OnComponentBeginOverlap event that appears in your Actor
Blueprint diagram to wire-in Blueprints code to run when an overlap with the
Player's capsule volume occurs.

3. If you prefer C++, you can write and attach a C++ function to the
CapsuleComponent. Write a member function in your player's avatar class
with a signature as follows:
UFUNCTION(BlueprintNativeEvent, Category = Collision)
void OnOverlapsBegin(UPrimitiveComponent* Comp, AActor*
OtherActor,
UPrimitiveComponent* OtherComp, int32 OtherBodyIndex,
bool bFromSweep, const FHitResult& SweepResult);

In UE 4.13, the OnOverlapsBegin function's signature has changed to:
OnOverlapsBegin(UPrimitiveComponent* Comp, AActor*
OtherActor,UPrimitiveComponent* OtherComp, int32
OtherBodyIndex, bool bFromSweep, const FHitREsult&
SweepResult);

4. Complete the implementation of the OnOverlapsBegin() function in your
.cpp file, making sure to end the function name with _Implementation:
void AWarrior::OnOverlapsBegin_Implementation(AActor*
OtherActor, UPrimitiveComponent* OtherComp,
int32 OtherBodyIndex,
bool bFromSweep, const FHitResult& SweepResult)
{
 UE_LOG(LogTemp, Warning, TEXT("Overlaps began"));
}

Input and Collision

178

5. Then, provide a PostInitializeComponents() override to connect the
OnOverlapsBegin() function with overlaps to the capsule in your avatar's
class as follows:
void AWarrior::PostInitializeComponents()
{
 Super::PostInitializeComponents();
 if(RootComponent)
 {
 // Attach contact function to all bounding components.
 GetCapsuleComponent()
 ->OnComponentBeginOverlap.AddDynamic(this,
 &AWarrior::OnOverlapsBegin);
 GetCapsuleComponent()
 ->OnComponentEndOverlap.AddDynamic(this,
 &AWarrior::OnOverlapsEnd);
 }
}

How it works…
The Overlap event raised by the engine allows code to run when two UE4 Actor Components
overlap, without preventing interpenetration of the objects.

Collision – preventing interpenetration
using Block

Blocking means that the Actor components will be prevented from interpenetration in the
engine, and any collision between two primitive shapes will be resolved, and not overlapping,
after collisions are found.

Getting ready
Begin with a UE4 project that has some objects with Actors having collision primitives
attached to them (SphereComponents, CapsuleComponents, or BoxComponents).

Chapter 6

179

How to do it...
1. Open the Blueprint of an actor that you want to block another actor with. For example,

we want the Player actor to block other Player actor instances.

2. Mark primitives inside the actor that you do not want interpenetrating with other
components as Blocking those components in the Details pane.

How it works…
When objects Block one another, they will not be allowed to interpenetrate. Any interpenetration
will be automatically resolved, and the objects will be pushed off each other.

There's more…
You can override the OnComponentHit function to run code when two objects hit each other.
This is distinct from the OnComponentBeginOverlap event.

181

Communication
between Classes and

Interfaces

This chapter shows you how to write your own UInterfaces, and demonstrates how to take
advantage of them within C++ to minimize class coupling and help keep your code clean.
The following recipes will be covered in this chapter:

 f Creating a UInterface

 f Implementing a UInterface on an object

 f Checking if a class implements a UInterface

 f Casting to a UInterface implemented in native code

 f Calling native UInterface functions from C++

 f Inheriting UInterface from one another

 f Overriding UInterface functions in C++

 f Exposing UInterface methods to Blueprint from a native base class

 f Implementing UInterface functions in Blueprint

 f Creating C++ UInterface function implementations that can be overridden
in Blueprint

 f Calling Blueprint-defined interface functions from C++

 f Implementing a simple interaction system with UInterfaces

7

Communication between Classes and Interfaces

182

Introduction
In your game projects, you will sometimes require a series of potentially disparate objects to
share a common functionality, but it would be inappropriate to use inheritance, because there
is no "is-a" relationship between the different objects in question. Languages such as C++
tend to use multiple inheritance to solve this issue.

However, in Unreal, if you wanted functions from both the parent classes to be accessible to
Blueprint, you would need to make both of them UCLASS. This is a problem for two reasons.
Inheriting from UClass twice in the same object would break the concept that UObject
should form a neatly traversable hierarchy. It also means that there are two instances of the
UClass methods on the object, and they would have to be explicitly differentiated between
within the code. The Unreal codebase solves this issue by borrowing a concept from C#—that
of an explicit Interface type.

The reason for using this approach, instead of composition, is that Components are only
available on Actors, not on UObjects in general. Interfaces can be applied to any UObject.
Furthermore, it means that we are no longer modeling an "is-a" relationship between the
object and the component; instead, it would only be able to represent "has-a" relationships.

Creating a UInterface
UInterfaces are a pair of classes that work together to enable classes to exhibit polymorphic
behavior among multiple class hierarchies. This recipe shows you the basic steps involved in
creating a UInterface purely in code.

How to do it...
1. UInterfaces don't show up inside the main class wizard within Unreal, so we'll need to

add the class manually using Visual Studio.

2. Right click on your Source folder inside Solution Explorer, and select Add | New
Item.

3. Select a .h file to start, and name it MyInterface.h.

4. Make sure you change the directory for the item to be placed in from Intermediate to
Source/ProjectName.

5. Click on OK to create a new header file in your project folder.

6. Repeat the steps in order to create MyInterface.cpp as your implementation file.

7. Add the following code to the header file:
#include "MyInterface.generated.h"
/** */
UINTERFACE()

Chapter 7

183

class UE4COOKBOOK_API UMyInterface: public UInterface
{
 GENERATED_BODY()
};

/** */
class UE4COOKBOOK_API IMyInterface
{
 GENERATED_BODY()

 public:
 virtualFStringGetTestName();
};

8. Implement the class with this code in the .cpp file:
#include "UE4Cookbook.h"
#include "MyInterface.h"

FString IMyInterface::GetTestName()
{
 unimplemented();
 return FString();
}

9. Compile your project to verify that the code was written without errors.

How it works...
1. UInterfaces are implemented as a pair of classes declared in the interface's header.

2. As always, because we are leveraging Unreal's reflection system, we need to include
our generated header file. Refer to Handling events implemented via virtual functions
in Chapter 5, Handling Events and Delegates, for more information.

3. As with classes that inherit from UObject, which uses UCLASS, we need to use the
UINTERFACE macro to declare our new UInterface.

4. The class is tagged UE4COOKBOOK_API to help with the exporting of library symbols.

5. The base class for the UObject portion of the interface is UInterface.

6. Just like UCLASS types, we require a macro to be placed inside the body of our class
so that the auto-generated code is inserted into it.

7. That macro is GENERATED_BODY() for UInterfaces. The macro must be placed at the
very start of the class body.

8. The second class is also tagged UE4COOKBOOK_API, and is named in a specific way.

Communication between Classes and Interfaces

184

9. Note that the UInterface-derived class and the standard class have the same
name but a different prefix. The UInterface-derived class has the prefix U, and the
standard class has the prefix I.

10. This is important as this is how the Unreal Header Tool expects the classes to be
named for the code it generates to work properly.

11. The plain native Interface class requires its own autogenerated content, which we
include using the GENERATED_BODY() macro.

12. We declare functions that classes inheriting the interface should implement inside
IInterface.

13. Within the implementation file, we implement the constructor for our UInterface,
as it is declared by the Unreal Header Tool, and requires an implementation.

14. We also create a default implementation for our GetTestName() function. Without
this, the linking phase of compilation will fail. This default implementation uses the
unimplemented() macro, which will issue a debug assert when the line of code is
executed.

See also
 f Refer to Passing payload data with a delegate binding in Chapter 5, Handling Events

and Delegates; the first recipe, in particular, explains some of the principles that
we've applied here

Implementing a UInterface on an object
Ensure that you've followed the previous recipe in order to have a UInterface ready to be
implemented.

How to do it...
1. Create a new Actor class using the Unreal Wizard, called

SingleInterfaceActor.

2. Add IInterface—in this case, IMyInterface—to the public inheritance list for our
new Actor class:
class UE4COOKBOOK_API ASingleInterfaceActor : public
AActor, public IMyInterface

3. Add an override declaration to the class for the IInterface function(s) that we
wish to override:
FStringGetTestName() override;

Chapter 7

185

4. Implement the overridden function in the implementation file by adding the following
code:
FStringASingleInterfaceActor::GetTestName()
{
 return IMyInterface::GetTestName();
}

How it works...
1. C++ uses multiple inheritance for the way it implements interfaces, so we leverage

that mechanism here with the declaration of our SingleInterfaceActor class,
where we add public IMyInterface.

2. We inherit from IInterface rather than UInterface to prevent
SingleInterfaceActor from inheriting two copies of UObject.

3. Given that the interface declares a virtual function, we need to redeclare that
function with the override specifier if we wish to implement it ourselves.

4. In our implementation file, we implement our overridden virtual function.

5. Inside our function override, for demonstration purposes, we call the base
IInterface implementation of the function. Alternatively, we could write our own
implementation, and avoid calling the base class one altogether.

6. We use IInterface:: specifier rather than Super, because Super refers to
the UClass that is the parent of our class, and IInterfaces aren't UClasses (hence,
no U prefix).

7. You can implement a second, or multiple, IInterfaces on your object, as needed.

Checking if a class implements a UInterface
Follow the first two recipes so that you have a UInterface we can check for, and a class
implementing the interface, which can be tested against.

How to do it...
1. Inside your Game Mode implementation, add the following code to the BeginPlay

function:
FTransformSpawnLocation;
ASingleInterfaceActor* SpawnedActor = GetWorld()
->SpawnActor<ASingleInterfaceActor>
(ASingleInterfaceActor::StaticClass(), SpawnLocation);
if (SpawnedActor->GetClass()
->ImplementsInterface(UMyInterface::StaticClass()))

Communication between Classes and Interfaces

186

{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 TEXT("Spawned actor implements interface!"));
}

2. Given that we are referencing both ASingleInterfaceActor and IMyInterface,
we need to #include both MyInterface.h and SingleInterfaceActor.h in
our Source file.

How it works...
1. Inside BeginPlay, we create an empty FTransform function, which has the default

value of 0 for all translation and rotation components, so we don't need to explicitly
set any of them.

2. We then use the SpawnActor function from UWorld so that we can create an
instance of our SingleActorInterface, storing the pointer to the instance into a
temporary variable.

3. We then use GetClass() on our instance to get a reference to its associated
UClass. We need a reference to UClass, because that object is the one which
holds all of the reflection data for the object.

4. Reflection data includes the names and types of all UPROPERTY on the object, the
inheritance hierarchy for the object, and a list of all the interfaces that it implements.

5. As a result, we can call ImplementsInterface() on UClass, and it will return
true if the object implements the UInterface in question.

6. If the object implements the interface, and therefore, returns true from
ImplementsInterface, we then print a message to the screen.

See also
 f Chapter 5, Handling Events and Delegates, has a number of recipes relating to the

spawning of actors

Casting to a UInterface implemented in
native code

One advantage that UInterfaces provides you with as a developer is the ability to treat a
collection of heterogeneous objects that implement a common interface as a collection of the
same object, using Cast< > to handle the conversion.

Chapter 7

187

Please note that this won't work if your class implements
the interface through a Blueprint.

Getting ready
You should have a UInterface, and an Actor implementing the interface ready for
this recipe.

Create a new game mode using the wizard within Unreal, or optionally, reuse a project and
GameMode from a previous recipe.

How to do it...
1. Open your game mode's declaration, and add a new UPROPERTY() macro to it:

UPROPERTY()
TArray<IMyInterface*>MyInterfaceInstances;

2. Add #include "MyInterface.h" to the header's include section.

3. Add the following within the game mode's BeginPlay implementation:
for (TActorIterator<AActor> It(GetWorld(),
AActor::StaticClass()); It; ++It)
{
 AActor* Actor = *It;
 IMyInterface* MyInterfaceInstance =
Cast<IMyInterface>(Actor);
 if (MyInterfaceInstance)
 {
 MyInterfaceInstances.Add(MyInterfaceInstance);
 }
}
GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
FString::Printf(TEXT("%d actors implement the interface"),
MyInterfaceInstances.Num()));

4. Set the level's game mode override to your game mode, then drag a few instances of
your custom Interface-implementing actor into the level.

Communication between Classes and Interfaces

188

5. When you play your level, a message should be printed on screen that indicates
the number of instances of the interface that have been implemented in Actors in
the level:

How it works...
1. We create an array of pointers to MyInterface implementations.

2. Inside BeginPlay, we use TActorIterator<AActor> to get all of the Actor
instances in our level.

3. TActorIterator has the following constructor:
explicitTActorIterator(UWorld* InWorld,
TSubclassOf<ActorType>InClass = ActorType::StaticClass())
: Super(InWorld, InClass)

4. TActorIterator expects a world to act on as well as a UClass instance to specify
what type of Actors we are interested in.

5. ActorIterator is an iterator like the STL iterator type. This means we can write a
for loop of the following form:
for (iterator-constructor;iterator;++iterator)

6. Inside the loop, we dereference the iterator to get an Actor pointer.

7. We then attempt to cast it to our interface; this will return a pointer to the interface if
it does implement it, else it will return nullptr.

8. As a result, we can check if the interface pointer is null, and if not, we can add the
interface pointer reference to our array.

9. Finally, once we've iterated through all the actors in TActorIterator, we can
display a message on the screen, which displays the count of items that implemented
the interface.

Chapter 7

189

Calling native UInterface functions from C++
Follow the previous recipe to get an understanding of casting an Actor pointer to an Interface
pointer.

Note that as this recipe relies on the casting technique used in the
previous recipe, it will only work with objects that implement the interface
using C++ rather than Blueprint. This is because Blueprint classes are not
available at compile time, and so, technically, don't inherit the interface.

How to do it...
1. Create a new Actor class using the editor wizard. Call it AntiGravityVolume.

2. Add BoxComponent to the new Actor.
UPROPERTY()
UBoxComponent* CollisionComponent;

3. Override the following Actor virtual functions in the header:
virtual void NotifyActorBeginOverlap(AActor* OtherActor) override;
virtual void NotifyActorEndOverlap(AActor* OtherActor) override;

4. Create an implementation within your source file, as follows:
voidAAntiGravityVolume::NotifyActorBeginOverlap(AActor*
OtherActor)
{
 IGravityObject* GravityObject =
Cast<IGravityObject>(OtherActor);
 if (GravityObject != nullptr)
 {
 GravityObject->DisableGravity();
 }
}

voidAAntiGravityVolume::NotifyActorEndOverlap(AActor*
OtherActor)
{
 IGravityObject* GravityObject =
Cast<IGravityObject>(OtherActor);
 if (GravityObject != nullptr)
 {
 GravityObject->EnableGravity();
 }
}

Communication between Classes and Interfaces

190

5. Initialize the BoxComponent in your constructor:
AAntiGravityVolume::AAntiGravityVolume()
{
 PrimaryActorTick.bCanEverTick = true;
 CollisionComponent =
 CreateDefaultSubobject<UBoxComponent>
 ("CollisionComponent");
 CollisionComponent->SetBoxExtent(FVector(200, 200, 400));
 RootComponent = CollisionComponent;

}

6. Create an interface called GravityObject.

7. Add the following virtual functions to IGravityObject:
virtual void EnableGravity();
virtual void DisableGravity();

8. Create the default implementation of the virtual functions inside the
IGravityObject implementation file:
voidIGravityObject::EnableGravity()
{
 AActor* ThisAsActor = Cast<AActor>(this);
 if (ThisAsActor != nullptr)
 {
 TArray<UPrimitiveComponent*>PrimitiveComponents;
 ThisAsActor->GetComponents(PrimitiveComponents);
 for (UPrimitiveComponent* Component :
 PrimitiveComponents)
 {
 Component->SetEnableGravity(true);
 }
 }
}

voidIGravityObject::DisableGravity()
{
 AActor* ThisAsActor = Cast<AActor>(this);
 if (ThisAsActor != nullptr)
 {

Chapter 7

191

 TArray<UPrimitiveComponent*>PrimitiveComponents;
 ThisAsActor->GetComponents(PrimitiveComponents);
 for (UPrimitiveComponent* Component :
 PrimitiveComponents)
 {
 Component->SetEnableGravity(false);
 }
 }
}

9. Create a subclass of Actor called PhysicsCube.

10. Add a static mesh:
UPROPERTY()
UStaticMeshComponent* MyMesh;

11. Initialize the component in your constructor:
MyMesh =
CreateDefaultSubobject<UStaticMeshComponent>("MyMesh");
autoMeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 MyMesh->SetStaticMesh(MeshAsset.Object);
}
MyMesh->SetMobility(EComponentMobility::Movable);
MyMesh->SetSimulatePhysics(true);
SetActorEnableCollision(true);

12. To have PhysicsCube implement GravityObject, first #include
"GravityObject.h" in the header file, then modify the class declaration:
class UE4COOKBOOK_API APhysicsCube : public AActor, public
IGravityObject

13. Compile your project.

14. Create a new level, and place an instance of our gravity volume in the scene.

Communication between Classes and Interfaces

192

15. Place an instance of PhysicsCube above the gravity volume, then rotate it slightly
so that it has one corner lower than the others, as shown in the following image:

16. Verify that the gravity is turned off on the object when it enters the volume, then turns
back on again.

Note that the gravity volume doesn't need to know anything about your
PhysicsCube actor, just the Gravity Object interface.

How it works...
1. We create a new Actor class, and add a box component to give the actor something

that will collide with the character. Alternatively, you could subclass AVolume if you
wanted to use the BSP functionality to define the volume's shape.

2. NotifyActorBeginOverlap and NotifyActorEndOverlap are overridden
so that we can perform some operation when an object enters or leaves the
AntiGravityVolume area.

3. Inside NotifyActorBeginOverlap implementation, we attempt to cast the object
that overlapped us into an IGravityObject pointer.

4. This tests if the object in question implements the interface.

5. If the pointer is valid, then the object does implement the interface, so it is safe to
use the interface pointer to call interface methods on the object.

6. Given that we are inside NotifyActorBeginOverlap, we want to disable the
gravity on the object, so we call DisableGravity().

7. Inside NotifyActorEndOverlap, we perform the same check, but we re-enable
gravity on the object.

Chapter 7

193

8. Within the default implementation of DisableGravity, we cast our own pointer
(the this pointer) to AActor.

9. This allows us to confirm that the interface has been implemented only on the Actor
subclasses as well as to call methods defined in AActor.

10. If the pointer is valid, we know we are an Actor, so we can use
GetComponents<class ComponentType>() to get a TArray of all components
of a specific type from ourselves.

11. GetComponents is a template function. It expects some template parameters:
template<class T, class AllocatorType>
voidGetComponents(TArray<T*, AllocatorType>&OutComponents)
const

12. Since the 2014 version of the standard, C++ supports compile-time deduction of
template parameters. This means that we don't need to actually specify the template
parameters when we call the function if the compiler can work them out from the
normal function parameters that we provide.

13. The default implementation of TArray is template<typename T, typename
Allocator = FDefaultAllocator> class TArray;

14. This means that we don't need to specify an allocator by default, so we just use
TArray<UPrimitiveComponent*> when we declare the array.

15. When TArray is passed into the GetComponents function, the compiler knows
it is actually TArray<UPrimitiveComponent*, FDefaultAllocator>,
and it is able to fill in the template parameters T and AllocatorType with
UPrimitiveComponent and FDefaultAllocator, so neither of those are
required as template parameters for the function's invocation.

16. GetComponents iterates through the components that Actor has, and any
components that inherit from typename T have pointers to them stored inside the
PrimitiveComponents array.

17. Using a range-based for loop, another new feature of C++, we can iterate over the
components that the function placed into our TArray without needing to use the
traditional for loop structure.

18. Each of the components has SetEnableGravity(false) called on them, which
disables gravity.

19. Likewise, the EnableGravity function iterates over all the primitive components
contained in the actor, and enables gravity with SetEnableGravity(true).

See also
 f Look at Chapter 4, Actors and Components, for extensive discussions on Actors and

Components. Chapter 5, Handling Events and Delegates, discusses events such as
NotifyActorOverlap.

Communication between Classes and Interfaces

194

Inheriting UInterface from one another
Sometimes, you may need to create a UInterface that specializes on a more general
UInterface.

This recipe shows you how to use inheritance with UInterfaces to specialize a Killable
interface with an Undead interface that cannot be killed by normal means.

How to do it...
1. Create a UINTERFACE/IInterface called UKillable.

2. Add UINTERFACE(meta=(CannotImplementInterfaceInBlueprint)) to the
UInterface declaration.

3. Add the following functions to the header file:
UFUNCTION(BlueprintCallable, Category=Killable)
virtual bool IsDead();
UFUNCTION(BlueprintCallable, Category = Killable)
virtual void Die();

4. Provide default implementations for the interface inside the implementation file:
boolIKillable::IsDead()
{
 return false;
}

voidIKillable::Die()
{
 GEngine->AddOnScreenDebugMessage(-1,1,
 FColor::Red,"Arrrgh");
 AActor* Me = Cast<AActor>(this);
 if (Me)
 {
 Me->Destroy();
 }

}

5. Create a new UINTERFACE/IInterface called Undead. Modify them to inherit from
UKillable/IKillable:
UINTERFACE()
class UE4COOKBOOK_API UUndead: public UKillable
{
 GENERATED_BODY()

Chapter 7

195

};

/** */
class UE4COOKBOOK_API IUndead: public IKillable
{
 GENERATED_BODY()

};

6. Ensure that you include the header defining the Killable interface.

7. Add some overrides and new method declarations to the new interface:
virtual bool IsDead() override;
virtual void Die() override;
virtual void Turn();
virtual void Banish();

8. Create implementations for the functions:
boolIUndead::IsDead()
{
 return true;
}

voidIUndead::Die()
{
 GEngine->AddOnScreenDebugMessage(-1,1, FColor::Red,"You
 can't kill what is already dead. Mwahaha");
}

voidIUndead::Turn()
{
 GEngine->AddOnScreenDebugMessage(-1,1, FColor::Red, "I'm
 fleeing!");

}

voidIUndead::Banish()
{
 AActor* Me = Cast<AActor>(this);
 if (Me)
 {
 Me->Destroy();
 }
}

Communication between Classes and Interfaces

196

9. Create two new Actor classes in C++: one called Snail, and the other called
Zombie.

10. Set the Snail class to implement the IKillable interface, and add the appropriate
header file, #include.

11. Likewise, set the Zombie class to implement IUndead, and #include
"Undead.h".

12. Compile your project.

13. Launch the editor, and drag an instance of both Zombie and Snail into your level.

14. Add a reference to each of them in the Level Blueprints.

15. Call Die (Message) on each reference.

16. Connect the execution pins of the two message calls, then wire it up to Event
BeginPlay.

Run the game, and then verify that the Zombie is disdainful of your efforts to kill it,
but the Snail groans and then dies (is removed from the world outliner).

How it works...
1. To make it possible to test this recipe in the Level Blueprints, we need to make the

interface functions callable via blueprint, so we need the BlueprintCallable
specifier on our UFUNCTION.

Chapter 7

197

2. However, in a UInterface, the compiler expects the interface to be implementable
via both C++ and Blueprint by default. This conflicts with BlueprintCallable,
which is merely saying that the function can be invoked from Blueprint, not that it can
be overridden in it.

3. We can resolve the conflict by marking the interface as
CannotImplementInterfaceInBlueprint.

4. This enables the use of BlueprintCallable as our UFUNCTION specifier rather
than BlueprintImplementableEvent (which has extra overhead due to the extra
code allowing for the function to be overridden via Blueprint).

5. We define IsDead and Die as virtual to enable them to be overridden in another
C++ class which inherits this one.

6. In our default interface implementation, IsDead always returns false.

The default implementation of Die prints a death message to the screen, and then destroys
the object implementing this interface if it is an Actor.

1. We can now create a second interface called Undead, which inherits from
Killable.

2. We use the public UKillable/public IKillable in the class declarations to
express this.

3. Of course, as a result, we need to include the header file that defines the Killable
interface.

4. Our new interface overrides the two functions that Killable defines to provide more
appropriate definitions of IsDead/Die for Undead.

5. Our overridden definitions have Undead already dead by returning true from
IsDead.

6. When Die is called on Undead, we simply print a message with Undead laughing at
our feeble attempt to kill it again, and do nothing.

7. We can also specify default implementations for our Undead-specific functions,
namely Turn() and Banish().

8. When Undead are Turned, they flee, and for demonstration purposes, we print a
message to the screen.

9. If an Undead is Banished, however, they are annihilated and destroyed without a
trace.

10. In order to test our implementation, we create two Actors that each inherit from one
of the two interfaces.

11. After we add an instance of each actor to our level, we use Level Blueprints to
access the level's BeginPlay event.

Communication between Classes and Interfaces

198

12. When the level begins play, we use a message call to try and call the Die function on
our instances.

13. The messages that print out are different, and correspond to the two function
implementations showing that the Zombie's implementation of Die is different,
and has overridden the Snail's.

Overriding UInterface functions in C++
One side effect of UInterfaces allowing inheritance in C++ is that we can override default
implementations in subclasses as well as in Blueprint. This recipe shows you how to do so.

Getting ready
Follow the recipe Calling native UInterface functions from C++ in which a Physics Cube is
created so that you have the class ready.

How to do it...
1. Create a new Interface called Selectable.

2. Define the following functions inside ISelectable:
virtual bool IsSelectable();

virtual bool TrySelect();

virtual void Deselect();

3. Provide a default implementation for functions like this:
boolISelectable::IsSelectable()
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 "Selectable");
 return true;
}

boolISelectable::TrySelect()
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 "Accepting Selection");
 return true;
}

voidISelectable::Deselect()

Chapter 7

199

{
 unimplemented();
}

4. Create a class based on APhysicsCube called SelectableCube.

5. #include "Selectable.h" inside the SelectableCube class' header.

6. Modify the ASelectableCube declaration like this:
class UE4COOKBOOK_API ASelectableCube : public
APhysicsCube, public ISelectable

7. Add the following functions to the header:
ASelectableCube();
virtual void NotifyHit(class UPrimitiveComponent* MyComp,
AActor* Other, class UPrimitiveComponent* OtherComp, bool
bSelfMoved, FVectorHitLocation, FVectorHitNormal,
FVectorNormalImpulse, constFHitResult& Hit) override;

8. Implement the functions:
ASelectableCube::ASelectableCube()
: Super()
{
 MyMesh->SetNotifyRigidBodyCollision(true);
}

voidASelectableCube::NotifyHit(class UPrimitiveComponent*
MyComp, AActor* Other, class UPrimitiveComponent*
OtherComp, bool bSelfMoved, FVectorHitLocation,
FVectorHitNormal, FVectorNormalImpulse, constFHitResult&
Hit)
{
 if (IsSelectable())
 {
 TrySelect();
 }
}

9. Create a new class, called NonSelectableCube, which inherits from
SelectableCube.

10. NonSelectableCube should override the functions from SelectableInterface:
virtual bool IsSelectable() override;

virtual bool TrySelect() override;

virtual void Deselect() override;

Communication between Classes and Interfaces

200

11. The implementation file should be altered to include the following:
boolANonSelectableCube::IsSelectable()
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red, "Not
 Selectable");
 return false;
}

boolANonSelectableCube::TrySelect()
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 "Refusing Selection");
 return false;
}

voidANonSelectableCube::Deselect()
{
 unimplemented();
}

12. Place an instance of SelectableCube into the level at a certain range above the
ground, and play your game. You should get messages verifying that the actor is
selectable, and that it has accepted the selection, when the cube hits the ground.

13. Remove SelectableCube and replace it with an instance of NonSelectableCube
to see the alternative messages indicating that this actor isn't selectable, and has
refused selection.

Chapter 7

201

How it works...
1. We create three functions inside the Selectable interface.

2. IsSelectable returns a Boolean to indicate if the object is selectable. You could
avoid this and simply use TrySelect, given that it returns a Boolean value to
indicate success, but, for example, you might want to know if the object inside your UI
is a valid selection without having to actually try it.

3. TrySelect actually attempts to select the object. There's no explicit contract forcing
users to respect IsSelectable when trying to select the object, so TrySelect is
named to communicate that the selection may not always succeed.

4. Lastly, Deselect is a function added to allow objects to handle losing the player
selection. This could involve changing the UI elements, halting sounds or other visual
effects, or simply removing a selection outline from around the unit.

5. The default implementations of the functions return true for IsSelectable (the
default is for any object to be selectable), true for TrySelect (selection attempts
always succeed), and issues a debug assert if Deselect is called without being
implemented by the class.

6. You could also implement Deselect as a pure virtual function if you wish.

7. SelectableCube is a new class inheriting from PhysicsCube, but also
implementing the ISelectable interface.

8. It also overrides NotifyHit, a virtual function defined in AActor that triggers
when the actor undergoes a RigidBody collision.

9. We call the constructor from PhysicsCube with the Super() constructor call inside
the implementation of SelectableCube. We then add our own implementation,
which calls SetNotifyRigidBodyCollision(true) on our static mesh instance.
This is necessary, because by default, RigidBodies (such as PrimitiveComponents
with a collision) don't trigger Hit events as a performance optimization. As a result,
our overridden NotifyHit function would never be called.

10. Within the implementation of NotifyHit, we call some of the ISelectable
interface functions on ourselves. Given that we know we are an object that inherits
from ISelectable, we don't need to cast to an ISelectable* in order to call
them.

11. We check to see if the object is selectable with IsSelectable, and if so, we try to
actually perform the selection using TrySelect.

12. NonSelectableCube inherits from SelectableCube, so we can force the object
to never be selectable.

13. We accomplish this by overriding the ISelectable interface functions again.

14. Within ANonSelectableCube::IsSelectable(), we print a message to the
screen so we can verify that the function is being called, and then return false to
indicate that the object isn't selectable at all.

Communication between Classes and Interfaces

202

15. In case the user doesn't respect IsSelectable(),
ANonSelectableCube::TrySelect() always returns false to indicate that the
selection wasn't successful.

16. Given that it is impossible for NonSelectableCube to be selected, Deselect()
calls unimplemented(), which throws an assert warning that the function was not
implemented.

17. Now, when playing your scene, each time SelectableCube/NonSelectableCube
hits another object, causing a RigidBody collision, the actor in question will attempt to
select itself, and print messages to the screen.

See also
 f Refer Chapter 6, Input and Collision, which shows you how to Raycast from the

mouse cursor into the game world to determine what is being clicked on, and could
be used to extend this recipe to allow the player to click on items to select them

Exposing UInterface methods to Blueprint
from a native base class

Being able to define UInterface methods in C++ is great, but they should be accessible
from Blueprint too. Otherwise, designers or others who are using Blueprint won't be able
to interact with your UInterface. This recipe shows you how to make a function from an
interface callable within the Blueprint system.

How to do it...
1. Create a UInterface called UPostBeginPlay/IPostBeginPlay.

2. Add the following virtual method to IPostBeginPlay:
UFUNCTION(BlueprintCallable, Category=Test)
virtual void OnPostBeginPlay();

3. Provide an implementation of the function:
voidIPostBeginPlay::OnPostBeginPlay()
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 "PostBeginPlay called");
}

4. Create a new Actor class called APostBeginPlayTest.

Chapter 7

203

5. Modify the class declaration so that it also inherits IPostBeginPlay:
UCLASS()
class UE4COOKBOOK_API APostBeginPlayTest : public AActor,
public IPostBeginPlay

6. Compile your project. Inside the editor, drag an instance of APostBeginPlayTest
into your level. With the instance selected, click on Open Level Blueprint:

7. Inside the Level Blueprint, right-click and Create a Reference to PostBeginPlayTest1.

8. Drag away from the blue pin on the right-hand side of your actor reference, then
search the context menu for onpost to see your new interface function available.
Click on it to insert a call to your native UInterface implementation from Blueprint.

Communication between Classes and Interfaces

204

9. Finally, connect the execution pin (white arrow) from the BeginPlay node to the
execution pin for OnPostBeginPlay.

10. When you play your level, you should see the message PostBeginPlay called visible
on screen for a short amount of time verifying that Blueprint has successfully
accessed and called through to your native code implementation of the
UInterface.

How it works...
1. The UINTERFACE/IInterface pair function as in other recipes, with the

UInterface containing reflection information and other data, and the IInterface
functioning as the actual interface class that can be inherited from.

2. The most significant element that allows the function inside IInterface to be
exposed to Blueprint is the UFUNCTION specifier.

3. BlueprintCallable marks this function as one that can be called from
the Blueprint system.

4. Any functions exposed to Blueprint in any way require a Category value
also. This Category value specifies the heading under which the function will be
listed in the context menu.

5. The function must also be marked virtual—this is so that a class that
implements the interface via native code can override the implementations
of the functions inside it. Without the virtual specifier, the Unreal Header
Tool will give you an error indicating that you have to either add virtual, or
BlueprintImplementableEvent as a UFUNCTION specifier.

6. The reason for this is that without either of those, the interface function wouldn't
be overridable in C++ (due to the absence of virtual), or Blueprint (because
BlueprintImplementableEvent was missing). An interface that can't be
overridden, but only inherited, has limited utility, so Epic have chosen not to support it
within UInterfaces.

7. We then provide a default implementation of the OnPostBeginPlay function, which
uses the GEngine pointer to display a debug message confirming that the function
was invoked.

Chapter 7

205

See also
 f Refer to Chapter 8, Integrating C++ and the Unreal Editor, for a number of recipes

showing how you can integrate your C++ classes with Blueprint

Implementing UInterface functions in
Blueprint

One of the key advantages of UInterface in Unreal is the ability for users to implement
UInterface functions in the editor. This means the interface can be implemented strictly
in Blueprint without needing any C++ code, which is helpful to designers.

How to do it...
1. Create a new UInterface called AttackAvoider.

2. Add the following function declaration to the header:
UFUNCTION(BlueprintImplementableEvent, BlueprintCallable,
Category = AttackAvoider)
voidAttackIncoming(AActor* AttackActor);

3. Create a new Blueprint Class within the Editor:

Communication between Classes and Interfaces

206

4. Base the class on Actor:

5. Open Class Settings:

6. Click on the drop-down menu for Implement Interface, and select AttackAvoider:

7. Compile your blueprint:

Chapter 7

207

8. Right-click in the Event Graph, and type event attack. Within the Context
Sensitive menu, you should see Event Attack Incoming. Select it to place an
event node in your graph:

9. Drag out from the execution pin on the new node, and release. Type print string
into the Context Sensitive menu to add a Print String node.

10. You have now implemented a UInterface function within Blueprint.

How it works...
1. The UINTERFACE/IInterface are created in exactly the same way that we see in

other recipes in this chapter.

2. When we add a function to the interface, however, we use a new UFUNCTION
specifier: BlueprintImplementableEvent.

3. BlueprintImplementableEvent tells the Unreal Header Tool to generate code
that creates an empty stub function that can be implemented by Blueprint. We do not
need to provide a default C++ implementation for the function.

Communication between Classes and Interfaces

208

4. We implement the interface inside Blueprint, which exposes the function for us in a
way that allows us to define its implementation in Blueprint.

5. The autogenerated code created by the header tool forwards the calls to the
UInterface function to our Blueprint implementation.

See also
 f The following recipe shows you how to define a default implementation for your

UInterface function in C++, then optionally override it in Blueprint if necessary

Creating C++ UInterface function
implementations that can be overridden
in Blueprint

Just as with the previous recipe, UInterfaces are useful, but that utility is severely limited
without their functionality being usable by designers.

The previous recipe shows you how to call C++ UInterface functions from Blueprint; this
recipe will show you how to replace the implementation of a UInterface function with your
own custom Blueprint-only function.

How to do it...
1. Create a new interface called Wearable (IWearable, UWearable).

2. Add the following functions to the header:
UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category
= Wearable)
int32GetStrengthRequirement();
UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category
= Wearable)
boolCanEquip(APawn* Wearer);
UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category
= Wearable)
voidOnEquip(APawn* Wearer);

3. Add the following function implementations in the implementation file:
int32 IWearable::GetStrengthRequirement_Implementation()
{
 return 0;
}

Chapter 7

209

Bool IWearable::CanEquip_Implementation(APawn* Wearer)
{
 return true;
}

Void IWearable::OnEquip_Implementation(APawn* Wearer)
{

}

4. Create a new Actor class called Boots inside the editor.

5. Add #include "Wearable.h" to the header file for Boots.

6. Modify the class declaration as follows:
UCLASS()
class UE4COOKBOOK_API ABoots : public AActor, public
IWearable

7. Add the following implementation of the pure virtual functions created by our
Interface:
virtual void OnEquip_Implementation(APawn* Wearer) override
{
 IWearable::OnEquip_Implementation(Wearer);
}
virtual bool CanEquip_Implementation(APawn* Wearer) override
{
 return IWearable::CanEquip_Implementation(Wearer);
}
virtual int32 GetStrengthRequirement_Implementation() override
{
 return
 IWearable::GetStrengthRequirement_Implementation();
}

8. Create a new Blueprint class called Gloves based on Actor.

9. In the class settings, select Wearable as the interface that the Gloves actor
will implement.

Communication between Classes and Interfaces

210

10. Within Gloves, override the OnEquip function like this:

11. Drag a copy of both Gloves and Boots into your level for testing purposes.

12. Add the following blueprint code to your level:

13. Verify that Boots performs the default behavior, but Gloves performs the blueprint-
defined behavior.

How it works...
1. This recipe uses two UFUNCTION specifiers together: BlueprintNativeEvent and

BlueprintCallable.

2. BlueprintCallable has been shown in previous recipes, and is a way of marking
your UFUNCTION as visible and invokable in the Blueprint Editor.

Chapter 7

211

3. BlueprintNativeEvent signifies a UFUNCTION that has a default C++ (native
code) implementation, but is also overridable in Blueprint. It's the combination of a
virtual function along with BlueprintImplementableEvent.

4. In order for this mechanism to work, the Unreal Header Tool generates the body
of your functions so that the Blueprint version of the function is called if it exists;
otherwise, it dispatches the method call through to the native implementation.

5. In order to separate your default implementation from the dispatch functionality
though, UHT defines a new function that takes its name from your declared function,
but appends _Implementation to the end.

6. This is why the header file declares GetStrengthRequirement, but has
no implementation, because that is autogenerated.

7. It is also why your implementation file defines GetStrengthRequirement_
Implementation, but there is no declaration for it, because it is also
autogenerated.

8. The Boots class implements IWearable, but doesn't override the default
functionality. However, because the _Implementation functions are defined as
virtual, we still need to explicitly implement the interface functions, and then call
the default implementation directly.

9. In contrast, Gloves also implements IWearable, but has an overridden
implementation for OnEquip defined in Blueprint.

10. This can be verified when we use Level Blueprints to call OnEquip for the two actors.

Calling Blueprint-defined interface functions
from C++

While the previous recipes have focused on C++ being usable in Blueprint, such as being able
to call functions from C++ in Blueprint, and override C++ functions with Blueprint, this recipe
shows you the reverse: calling a Blueprint-defined interface function from C++.

How to do it...
1. Create a new UInterface called UTalker/ITalker.

2. Add the following UFUNCTION implementation:
UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category
= Talk)
void StartTalking();

Communication between Classes and Interfaces

212

3. Provide a default empty implementation inside the .cpp file:
void ITalker::StartTalking_Implementation()
{

}

4. Create a new class based on StaticMeshActor.

5. Add #include and modify the class declaration to include the talker interface:
#include "Talker.h"
class UE4COOKBOOK_API ATalkingMesh : public
AStaticMeshActor, public ITalker

6. Also, add the following function to the class declaration:
void StartTalking_Implementation();

7. Within the implementation, add the following to the constructor:
ATalkingMesh::ATalkingMesh()
:Super()
{
 autoMeshAsset =
 ConstructorHelpers::FObjectFinder<UStaticMesh>
 (TEXT("StaticMesh'/Engine/BasicShapes/Cube.Cube'"));
 if (MeshAsset.Object != nullptr)
 {
 GetStaticMeshComponent()-
 >SetStaticMesh(MeshAsset.Object);
 //GetStaticMeshComponent()-
 >SetCollisionProfileName
 (UCollisionProfile::Pawn_ProfileName);
 GetStaticMeshComponent()->bGenerateOverlapEvents =
 true;
 }
 GetStaticMeshComponent()-
 >SetMobility(EComponentMobility::Movable);
 SetActorEnableCollision(true);
}
Implmement the default implementation of our StartTalking
function:
voidATalkingMesh::StartTalking_Implementation()
{
 GEngine->AddOnScreenDebugMessage(-1, 1, FColor::Red,
 TEXT("Hello there. What is your name?"));
}

Chapter 7

213

8. Create a new class based on DefaultPawn to function as our player character.

9. Add some UPROPERTY/UFUNCTION to our class header:
UPROPERTY()
UBoxComponent* TalkCollider;
UFUNCTION()
voidOnTalkOverlap(AActor* OtherActor, UPrimitiveComponent*
OtherComp, int32 OtherBodyIndex, bool bFromSweep,
constFHitResult&SweepResult);

10. Modify the constructor:
ATalkingPawn::ATalkingPawn()
:Super()
{
 // Set this character to call Tick() every frame. You
 can turn this off to improve performance if you don't
 need it.
 PrimaryActorTick.bCanEverTick = true;
 TalkCollider =
 CreateDefaultSubobject<UBoxComponent>("TalkCollider");
 TalkCollider->SetBoxExtent(FVector(200, 200, 100));
 TalkCollider->OnComponentBeginOverlap.AddDynamic(this,
 &ATalkingPawn::OnTalkOverlap);
 TalkCollider->AttachTo(RootComponent);
}

11. Implement OnTalkOverlap:
voidATalkingPawn::OnTalkOverlap(AActor* OtherActor,
UPrimitiveComponent* OtherComp, int32 OtherBodyIndex, bool
bFromSweep, constFHitResult&SweepResult)
{
 if (OtherActor->GetClass()-
 >ImplementsInterface(UTalker::StaticClass()))
 {
 ITalker::Execute_StartTalking(OtherActor);
 }
}

12. Create a new GameMode, and set TalkingPawn as the default pawn class
for the player.

13. Drag an instance of your ATalkingMesh class into the level.

Communication between Classes and Interfaces

214

14. Create a new Blueprint class based on ATalkingMesh by right-clicking on it, and
selecting the appropriate option from the context menu:

15. Name it MyTalkingMesh.

16. Inside the blueprint editor, create an implementation for StartTalking like this:

17. Drag a copy of your new Blueprint into the level beside your ATalkingMesh instance.

18. Walk up to the two actors, and verify that your custom Pawn is correctly invoking
either the default C++ implementation or the Blueprint implementation, as
appropriate.

Chapter 7

215

How it works...
1. As always, we create a new interface, and then add some function definitions to the

IInterface class.

2. We use the BlueprintNativeEvent specifier to indicate that we want to declare a
default implementation in C++ that can then be overridden in Blueprint.

3. We create a new class (inheriting from StaticMeshActor for convenience),
and implement the interface on it.

4. In the implementation of the new class constructor, we load a static mesh,
and set our collision as usual.

5. We then add an implementation for our interface function, which simply
prints a message to the screen.

6. If you were using this in a full-blown project, you could play animations,
play audio, alter the user interface, and whatever else was necessary to start a
conversation with your Talker.

7. At this point, though, we don't have anything to actually call StartTalking on our
Talker.

8. The simplest way to implement this is to create a new Pawn subclass (again,
inheriting from DefaultPawn for convenience) that can start talking to any Talker
actors that it collides with.

9. In order for this to work, we create a new BoxComponent to establish the
radius at which we will trigger a conversation.

10. As always, it is a UPROPERTY, so it won't get garbage collected.

11. We also create the definition for a function that will get triggered when the
new BoxComponent overlaps another Actor in the scene.

12. The constructor for our TalkingPawn initializes the new BoxComponent,
and sets its extents appropriately.

13. The constructor also binds the OnTalkOverlap function as an event
handler to handle collisions with our BoxComponent.

14. It also attaches the box component to our RootComponent so that it moves
with the rest of the player character as the player moves around the level.

15. Inside OnTalkOverlap, we need to check if the other actor, which is
overlapping our box, implements the Talker interface.

16. The most reliable way to do this is with the ImplementsInterface function in
UClass. This function uses the class information generated by the Unreal Header
Tool during compilation, and correctly handles both C++ and Blueprint-implemented
interfaces.

Communication between Classes and Interfaces

216

17. If the function returns true, we can use a special autogenerated function contained
in our IInterface to invoke the interface method of our choice on our instance.

18. This is a static method of the form <IInterface>::Execute_<FunctionName>.
In our instance, our IInterface is ITalker, and the function is StartTalking,
so the function we want to invoke is ITalker::Execute_StartTalking().

19. The reason we need this function is that when an interface is implemented in
Blueprint, the relationship isn't actually established at compile time. C++ is,
therefore, not aware of the fact that the interface is implemented, and so we can't
cast the Blueprint class to IInterface to call functions directly.

20. The Execute_ functions take a pointer to the object that implements the interface,
and call a number of internal methods to invoke the desired function's Blueprint
implementation.

21. When you play the level, and walk around, the custom Pawn is constantly receiving
notifications when it's BoxComponent overlaps other objects.

22. If they implement the UTalker/ITalker interface, the pawn then tries to
invoke StartTalking on the Actor instance in question, which then prints the
appropriate message on screen.

Implementing a simple interaction system
with UInterfaces

This recipe will show you how to combine a number of other recipes in this chapter to
demonstrate a simple interaction system, and a door with an interactable doorbell to cause
the door to open.

How to do it...
1. Create a new interface, Interactable.

2. Add the following functions to the IInteractable class declaration:
UFUNCTION(BlueprintNativeEvent, BlueprintCallable,
Category=Interactable)
boolCanInteract();
UFUNCTION(BlueprintNativeEvent, BlueprintCallable, Category
= Interactable)
voidPerformInteract();

3. Create default implementations for both functions in the implementation file:
boolIInteractable::CanInteract_Implementation()
{
 return true;
}

Chapter 7

217

voidIInteractable::PerformInteract_Implementation()
{

}

4. Create a second interface, Openable.

5. Add this function to its declaration:
UFUNCTION(BlueprintNativeEvent, BlueprintCallable,
Category=Openable)
void Open();

6. As with Interactable, create a default implementation for the Open
function:
voidIOpenable::Open_Implementation()
{
}

7. Create a new class, based on StaticMeshActor, called DoorBell.

8. #include "Interactable.h" in DoorBell.h, and add the following functions to
the class declaration:
virtual bool CanInteract_Implementation() override;
virtual void PerformInteract_Implementation() override;
UPROPERTY(BlueprintReadWrite, EditAnywhere)
AActor* DoorToOpen;
private:
boolHasBeenPushed;

9. In the .cpp file for DoorBell, #include "Openable.h".

10. Load a static mesh for our DoorBell in the constructor:
HasBeenPushed = false;
autoMeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()-
 >SetStaticMesh(MeshAsset.Object);
 //GetStaticMeshComponent()-
 >SetCollisionProfileName(UCollisionProfile
 ::Pawn_ProfileName);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}

Communication between Classes and Interfaces

218

GetStaticMeshComponent()-
>SetMobility(EComponentMobility::Movable);
GetStaticMeshComponent()-> SetWorldScale3D(FVector(0.5,
0.5, 0.5));
SetActorEnableCollision(true);

DoorToOpen = nullptr;

11. Add the following function implementations to implement the
Interactable interface on our DoorBell:
boolADoorBell::CanInteract_Implementation()
{
 return !HasBeenPushed;
}

voidADoorBell::PerformInteract_Implementation()
{
 HasBeenPushed = true;
 if (DoorToOpen->GetClass()-
 >ImplementsInterface(UOpenable::StaticClass()))
 {
 IOpenable::Execute_Open(DoorToOpen);
 }
}

12. Now create a new StaticMeshActor-based class called Door.

13. #include the Openable and Interactable interfaces into the class header, then
modify Door's declaration:
class UE4COOKBOOK_API ADoor : public AStaticMeshActor,
public IInteractable, public IOpenable

14. Add the interface functions to Door:
UFUNCTION()
virtual bool CanInteract_Implementation() override { return
IInteractable::CanInteract_Implementation(); };
UFUNCTION()
virtual void PerformInteract_Implementation() override;

UFUNCTION()
virtual void Open_Implementation() override;

Chapter 7

219

15. As with DoorBell, in the Door constructor, initialize our mesh component, and load
a model in:
autoMeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()-
 >SetStaticMesh(MeshAsset.Object);
 //GetStaticMeshComponent()-
 >SetCollisionProfileName(UCollisionProfile
 ::Pawn_ProfileName);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()-
>SetMobility(EComponentMobility::Movable);
GetStaticMeshComponent()->SetWorldScale3D(FVector(0.3, 2,
3));
SetActorEnableCollision(true);

16. Implement the interface functions:
voidADoor::PerformInteract_Implementation()
{
 GEngine->AddOnScreenDebugMessage(-1, 5, FColor::Red,
 TEXT("The door refuses to budge. Perhaps there is a
 hidden switch nearby?"));
}

voidADoor::Open_Implementation()
{
 AddActorLocalOffset(FVector(0, 0, 200));
}

17. Create a new DefaultPawn-based class called AInteractingPawn.

18. Add the following functions to the Pawn class header:
voidTryInteract();

private:
virtual void SetupPlayerInputComponent(UInputComponent*
InInputComponent) override;

Communication between Classes and Interfaces

220

19. Inside the implementation file for the Pawn, #include "Interactable.h",
and then provide implementations for both functions from the header:
voidAInteractingPawn::TryInteract()
{
 APlayerController* MyController =
 Cast<APlayerController>(Controller);
 if (MyController)
 {
 APlayerCameraManager* MyCameraManager = MyController-
 >PlayerCameraManager;
 autoStartLocation = MyCameraManager-
 >GetCameraLocation();
 autoEndLocation = MyCameraManager->GetCameraLocation()
 + (MyCameraManager->GetActorForwardVector() * 100);
 FHitResultHitResult;
 GetWorld()->SweepSingleByObjectType(HitResult,
 StartLocation, EndLocation, FQuat::Identity,
 FCollisionObjectQueryParams
 (FCollisionObjectQueryParams::AllObjects),
 FCollisionShape::MakeSphere(25),
 FCollisionQueryParams(FName("Interaction"),true,this));
 if (HitResult.Actor != nullptr)
 {
 if (HitResult.Actor->GetClass()-
 >ImplementsInterface(UInteractable::StaticClass()))
 {
 if
 (IInteractable::Execute_CanInteract
 (HitResult.Actor.Get()))
 {
 IInteractable::Execute_PerformInteract
 (HitResult.Actor.Get());
 }
 }
 }
 }
}
voidAInteractingPawn::SetupPlayerInputComponent(UInputCompo
nent* InInputComponent)
{
 Super::SetupPlayerInputComponent(InInputComponent);
 InInputComponent->BindAction("Interact", IE_Released,
 this, &AInteractingPawn::TryInteract);
}

Chapter 7

221

20. Now, either create a new GameMode in C++ or Blueprint, and set InteractingPawn
as our default Pawn class.

21. Drag a copy of both Door and Doorbell into the level:

22. Use the eyedropper beside doorbell's Door to Open, as shown in the following
screenshot, then click on the door actor instance in your level:

23. Create a new Action binding in the editor called Interact, and bind it to a key of
your choice:

Communication between Classes and Interfaces

222

24. Play your level, and walk up to the doorbell. Look at it, and press whatever key you
bound Interact with. Verify that the door moves once.

25. You can also interact with the door directly to receive some information about it.

How it works...
1. As in previous recipes, we mark UFUNCTION as BlueprintNativeEvent and

BlueprintCallable in order to allow the UInterface to be implemented in
either native code or Blueprint, and allow the functions to be called with either
method.

2. We create DoorBell based on StaticMeshActor for convenience, and have
DoorBell implement the Interactable interface.

3. Inside the constructor for DoorBell, we initialize HasBeenPushed and
DoorToOpen to the default safe values.

4. Within the implementation for CanInteract, we return the inverse of
HasBeenPushed so that once the button has been pushed it, can't be interacted
with.

5. Inside PerformInteract, we check if we have a reference to a door object
to open.

6. If we have a valid reference, we verify that the door actor implements
Openable, then we invoke the Open function on our door.

7. Within Door, we implement both Interactable and Openable, and override the
functions from each.

8. We define the Door implementation of CanInteract to be the same as the default.

9. Within PerformInteract, we display a message to the user.

10. Inside Open, we use AddActorLocalOffset to move the door a certain
distance away. With Timeline in Blueprint or a linear interpolation, we could make this
transition smooth rather than a teleport.

11. Lastly, we create a new Pawn so that the player can actually interact with
objects.

12. We create a TryInteract function, which we bind to the Interact input
action in the overridden SetupPlayerInputComponent function.

13. This means that when the player performs the input that is bound to Interact, our
TryInteract function will run.

14. TryInteract gets a reference to PlayerController, casting the generic
controller reference that all Pawns have.

Chapter 7

223

15. PlayerCameraManager is retrieved through PlayerController, so we can
access the current location and rotation of the player camera.

16. We create start and end points using the camera's location, then 100 units in the
forward direction away from the camera's location, and pass those into GetWorld::
SweepSingleByObjectType.

17. This function takes in a number of parameters. HitResult is a variable that
allows the function to return information about any object hit by the trace.
CollisionObjectQueryParams allows us to specify if we are interested in
dynamic, static items, or both.

18. We accomplish a sphere trace by passing the shape in using the
MakeSphere function.

19. Sphere traces allow for slightly more human error by defining a cylinder to check for
objects rather than a straight line. Given that the players might not look exactly at
your object, you can tweak the sphere's radius as appropriate.

20. The final parameter, SweepSingleByObjectType, is a struct that gives the trace a
name, lets us specify if we are colliding against complex collision geometry, and most
importantly, allows us to specify that we want to ignore the object which is initiating
the trace.

21. If HitResult contains an actor after the trace is done, we check if the actor
implements our interface, then attempt to call CanInteract on it.

22. If the actor indicates yes, it can be interacted with, so we then tell it to actually perform
the interaction.

225

Integrating C++ and the
Unreal Editor

In this chapter, we will cover following recipes:

 f Using a class or struct as a blueprint variable

 f Creating classes or structs that can be subclassed in Blueprint

 f Creating functions that can be called in Blueprint

 f Creating events that can be implemented in Blueprint

 f Exposing multi-cast delegates to Blueprint

 f Creating C++ enums that can be used in Blueprint

 f Editing class properties in different places in the editor

 f Making properties accessible in the Blueprint editor graph

 f Responding to property – changed events from the editor

 f Implementing a native code Construction Script

 f Creating a new editor module

 f Creating new toolbar buttons

 f Creating new menu entries

 f Creating a new editor window

 f Creating a new Asset type

 f Creating custom context menu entries for Assets

 f Creating new console commands

 f Creating a new graph pin visualizer for Blueprint

 f Inspecting types with custom Details panels

8

Integrating C++ and the Unreal Editor

226

Introduction
One of Unreal's primary strengths is that it provides programmers with the ability to create
Actors and other objects that can be customized or used by designers in the editor. This
chapter shows how. Following that, we will try to customize the editor by creating custom
Blueprint and Animation nodes from scratch. We will also implement custom editor windows
and custom Details panels for inspecting the types created by users.

Using a class or struct as a blueprint
variable

Types that you declare in C++ do not automatically get incorporated into Blueprint for use as
variables. This recipe shows you how to make them accessible so that you can use custom
native code types as Blueprint function parameters.

How to do it…
1. Create a new class using the editor. Unlike previous chapters, we are going to create

an Object-based class. Object isn't visible in the default list of common classes, so we
need to tick the Show all classes button in the editor UI, then select Object. Call your
new Object subclass TileType.

2. Add the following properties to the TileType definition:
UPROPERTY()
int32 MovementCost;
UPROPERTY()
bool CanBeBuiltOn;

UPROPERTY()
FString TileName;

3. Compile your code.

Chapter 8

227

4. Inside the editor, create a new Blueprint class based on Actor. Call it Tile.

5. Within the blueprint editor for Tile, add a new variable to the Blueprint. Check the
list of types that you can create as variables, and verify that TileType is not there.

6. Add BlueprintType to the UCLASS macro as follows:
UCLASS(BlueprintType)
class UE4COOKBOOK_API UTileType : public UObject
{
}

7. Recompile the project, then return to the Tile blueprint editor.

Integrating C++ and the Unreal Editor

228

8. Now when you add a new variable to your actor, you can select TileType as the type
for your new variable.

9. We've now established a "has-a" relationship between Tile and TileType.

10. Now TileType is a Blueprint type that can be used as a function parameter.
Create a new function on your Tile blueprint called SetTileType.

11. Add a new input:

Chapter 8

229

12. Set the input parameter's type to TileType.

13. You can drag our Type variable into the viewport, and select Set.

14. Assign the Exec pin and input parameter from SetTileType to the Set node.

Integrating C++ and the Unreal Editor

230

How it works…
1. For performance reasons, Unreal assumes that classes do not require the extra

reflection code that is needed to make the type available to Blueprint.

2. We can override this default by specifying BlueprintType in our UCLASS macro.

3. With the specifier included, the type is now made available as a parameter or variable
in Blueprint.

There's more…
This recipe shows that you can use a type as a function parameter in Blueprint if its native
code declaration includes BlueprintType.

However, at the moment, none of the properties that we defined in C++ are accessible to
Blueprint.

Other recipes in this chapter deal with making those properties accessible so that we can
actually do something meaningful with our custom objects.

Creating classes or structs that can be
subclassed in Blueprint

While this book focuses on C++, when developing with Unreal, a more standard workflow is
to implement core gameplay functionality as well as performance-critical code in C++, and
expose those features to Blueprint to allow designers to prototype gameplay, which can then
be refactored by programmers with additional Blueprint features, or pushed back down to the
C++ layer.

One of the most common tasks, then, is to mark up our classes and structs in such a way that
they are visible to the Blueprint system.

How to do it…
1. Create a new Actor class using the editor wizard; call it BaseEnemy.

2. Add the following UPROPERTY to the class:
UPROPERTY()
FString WeaponName;
UPROPERTY()
int32 MaximumHealth;

Chapter 8

231

3. Add the following class specifier to the UCLASS macro:
UCLASS(Blueprintable)
class UE4COOKBOOK_API ABaseEnemy : public AActor

4. Open the editor and create a new blueprint class. Expand the list to show all classes
and select our BaseEnemyclass as the parent.

5. Name the new Blueprint EnemyGoblin and open it in the Blueprint editor.

6. Note that the UPROPERTY macro we created earlier still aren't there because we
haven't yet included the appropriate markup for them to be visible to Blueprint.

How it works…
1. The previous recipe demonstrated the use of BlueprintType as a class specifier.

BlueprintType allows the type to be used as a type within the Blueprint editor
(that is, it can be a variable or a function input/return value).

2. However, we may want to create blueprints based on our type (using inheritance)
rather than composition (placing an instance of our type inside an Actor,
for example).

Integrating C++ and the Unreal Editor

232

3. This is why Epic provided Blueprintable as a class specifier. Blueprintable
means a developer can mark a class as inheritable by the Blueprint classes.

4. We have both BlueprintType and Blueprintable instead of a single combined
specifier, because sometimes, you may only want partial functionality. For example,
certain classes should be usable as variables, but performance reasons forbid
creating them in Blueprint. In that instance, you would use BlueprintType rather
than both specifiers.

5. On the other hand, perhaps we want to use the Blueprint editor to create new
subclasses, but we don't want to pass object instances around inside the Actor
blueprints. It is recommended to use Blueprintable, but omit BlueprintType in
this case.

6. As before, neither Blueprintable or BlueprintType specifies anything about the
member functions or member variables contained inside our class. We'll make those
available in later recipes.

Creating functions that can be called in
Blueprint

While marking classes as BlueprintType or Blueprintable allows us to pass instances
of the class around in Blueprint, or to subclass the type with a Blueprint class, those specifiers
don't actually say anything about member functions or variables, and if they should be
exposed to Blueprint.

This recipe shows you how to mark a function so that it can be called within Blueprint graphs.

How to do it…
1. Create a new Actor class using the editor. Call the actor SlidingDoor.

2. Add the following UPROPERTY to the new class:
UFUNCTION(BlueprintCallable, Category = Door)
void Open();
UPROPERTY()
bool IsOpen;

UPROPERTY()
FVector TargetLocation;

Chapter 8

233

3. Create the class implementation by adding the following to the .cpp file:
ASlidingDoor::ASlidingDoor()
:Super()
{
 auto MeshAsset =
 ConstructorHelpers::FObjectFinder<UStaticMesh>
 (TEXT("StaticMesh'/Engine/BasicShapes/Cube.Cube'"));
 if (MeshAsset.Object != nullptr)
 {
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents =
 true;
 }
 GetStaticMeshComponent()
 ->SetMobility(EComponentMobility::Movable);
 GetStaticMeshComponent()->SetWorldScale3D(FVector(0.3, 2,
 3));
 SetActorEnableCollision(true);
 IsOpen = false;
 PrimaryActorTick.bStartWithTickEnabled = true;
 PrimaryActorTick.bCanEverTick = true;
}
void ASlidingDoor::Open()
{
 TargetLocation =
 ActorToWorld().TransformPositionNoScale(FVector(0, 0,
 200));
 IsOpen = true;
}

void ASlidingDoor::Tick(float DeltaSeconds)
{
 if (IsOpen)
 {
 SetActorLocation(FMath::Lerp(GetActorLocation(),
 TargetLocation, 0.05));
 }
}

4. Compile your code and launch the editor.

5. Drag a copy of your door out into the level.

Integrating C++ and the Unreal Editor

234

6. Make sure you have your SlidingDoor instance selected, then open the Level
blueprint. Right-click on the empty canvas, and expand Call function on Sliding
Door 1.

7. Expand the Door section, then select the Open function.

8. Link the execution pin (white arrow) from BeginPlay to the white arrow on the Open
node, as seen in the following screenshot:

Chapter 8

235

9. Play your level, and verify that the door moves up as expected when Open is invoked
on your door instance.

How it works…
1. Within the declaration of the door, we create a new function for opening the door,

a Boolean to track if the door has been told to open, and a vector allowing us to
precompute the target location of the door.

2. We also override the Tick actor function so that we can perform some behavior on
every frame.

3. Within the constructor, we load in the cube mesh and scale it to represent our door.

4. We also set IsOpen to a known good value of false and enable actor ticking by
using bCanEverTick and bStartWithTickEnabled.

5. These two Booleans control if ticking can be enabled for this actor and if ticking
starts in an enabled state respectively.

6. Inside the Open function, we calculate the target location relative to the door's
starting position.

7. We also change the IsOpen Boolean from false to true.

8. Now that the IsOpen Boolean is true, inside the Tick function, the door tries
to move itself towards the target location using SetActorLocation and Lerp
to interpolate between the current location and the destination.

Integrating C++ and the Unreal Editor

236

See also
 f Chapter 5, Handling Events and Delegates, has a number of recipes relating to the

spawning of actors

Creating events that can be implemented in
Blueprint

Another way that C++ can be more tightly integrated with Blueprint is the creation of functions
that can have Blueprint implementations in native code. This allows for a programmer to
specify an event, and invoke it, without needing to know anything about the implementation.
The class can then be subclassed in Blueprint, and another member of the production team
can implement a handler for the event without ever having to go near a line of C++.

How to do it…
1. Create a new StaticMeshActor class called Spotter.

2. Make sure the following functions are defined and overridden in the class header:
virtual void Tick(float DeltaSeconds) override;
UFUNCTION(BlueprintImplementableEvent)
void OnPlayerSpotted(APawn* Player);

3. Add this code to the constructor:
PrimaryActorTick.bCanEverTick = true;
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>
(TEXT("StaticMesh'/Engine/BasicShapes/Cone.Cone'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()
->SetMobility(EComponentMobility::Movable);
GetStaticMeshComponent()->SetRelativeRotation(FRotator(90,
0, 0));

Chapter 8

237

4. Add this to the Tick function:
Super::Tick(DeltaTime);

auto EndLocation = GetActorLocation() +
ActorToWorld().TransformVector(FVector(0,0,-200));
FHitResult HitResult;
GetWorld()->SweepSingleByChannel(HitResult,
GetActorLocation(), EndLocation, FQuat::Identity,
ECC_Camera, FCollisionShape::MakeSphere(25),
FCollisionQueryParams("Spot", true, this));
APawn* SpottedPlayer = Cast<APawn>(HitResult.Actor.Get());

if (SpottedPlayer!= nullptr)
{
 OnPlayerSpotted(SpottedPlayer);
}
DrawDebugLine(GetWorld(), GetActorLocation(), EndLocation,
FColor::Red);

5. Compile and start the editor. Find your Spotter class in Content Browser, then left-
click and drag a copy out into the game world.

6. When you play the level, you'll see the red line showing the trace that the Actor
is performing. However, nothing will happen, because we haven't implemented our
OnPlayerSpotted event.

7. In order to implement this event, we need to create a blueprint subclass of our
Spotter.

8. Right-click on Spotter in Content Browser, and select Create Blueprint class
based on Spotter. Name the class BPSpotter.

Integrating C++ and the Unreal Editor

238

9. Inside the Blueprint editor, click on the Override button in the Functions section of
the My Blueprint panel:

10. Select On Player Spotted:

11. Left-click and drag from the white execution pin on our event. In the context menu
that appears, select and add a Print String node so that it is linked to the event.

Chapter 8

239

12. Play the level again, and verify that walking in front of the trace that the Spotter is
using now prints a string to the screen.

How it works…
1. In the constructor for our Spotter object, we load one of the basic primitives,

a cone, into our Static Mesh Component as a visual representation.

2. We then rotate the cone so that it resembles a spotlight pointing to the X axis of the
actor.

3. During the Tick function, we get the actor's location, and then find a point 200 units
away from the actor along its local X axis. We call the parent class implementation of
Tick using Super:: to ensure that any other tick functionality is preserved despite
our override.

4. We convert a local position into a world space position by first acquiring the Actor-to-
World transform for the Actor, then using that to transform a vector specifying the
position.

5. The transform is based on the orientation of the root component, which is the static
mesh component that we rotated during the constructor.

6. As a result of that existing rotation, we need to rotate the vector we want to transform.
Given that we want the vector to point out of what was the bottom of the cone, we
want a distance along the negative up axis, that is, we want a vector of the form (0,0,-
d), where d is the actual distance away.

7. Having calculated our end location for our trace, we actually perform the trace with
the SweepSingleByChannel function.

8. Once the sweep is performed, we try to cast the resulting hit Actor into a pawn.

9. If the cast was successful, we invoke our Implementable Event of
OnPlayerSpotted, and the user-defined Blueprint code executes.

Integrating C++ and the Unreal Editor

240

Exposing multi-cast delegates to Blueprint
Multi-cast delegates are a great way to broadcast an event to multiple objects who listen or
subscribe to the event in question. They are particularly invaluable if you have a C++ module
that generates events that potentially arbitrary Actors might want to be notified about. This
recipe shows you how to create a multi-cast delegate in C++ that can notify a group of other
Actors during runtime.

How to do it…
1. Create a new StaticMeshActor class called King. Add the following to the class

header:
DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam(FOnKing
DeathSignature, AKing*, DeadKing);

2. Add a new UFUNCTION to the class:
UFUNCTION(BlueprintCallable, Category = King)
void Die();

3. Add an instance of our multicast delegate to the class:
UPROPERTY(BlueprintAssignable)
FOnKingDeathSignature OnKingDeath;

4. Add our mesh initialization to the constructor:
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cone.Cone'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()
->SetMobility(EComponentMobility::Movable);

5. Implement the Die function:
void AKing::Die()
{
 OnKingDeath.Broadcast(this);
}

Chapter 8

241

6. Create a new class called Peasant, also based on StaticMeshActor.

7. Declare a default constructor in the class:
APeasant();

8. Declare the following function:
UFUNCTION(BlueprintCallable, category = Peasant)
void Flee(AKing* DeadKing);

9. Implement the constructor:
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cube.Cube'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()
->SetMobility(EComponentMobility::Movable);

10. Implement the function in the .cpp file:
void APeasant::Flee(AKing* DeadKing)
{
 GEngine->AddOnScreenDebugMessage(-1, 2, FColor::Red,
 TEXT("Waily Waily!"));
 FVector FleeVector = GetActorLocation() – DeadKing
 ->GetActorLocation();
 FleeVector.Normalize();
 FleeVector *= 500;
 SetActorLocation(GetActorLocation() + FleeVector);
}

11. Open Blueprint and create a Blueprint class based on APeasant called BPPeasant.

Integrating C++ and the Unreal Editor

242

12. Within the blueprint, click and drag away from the white (execution) pin of your
BeginPlay node. Type get all, and you should see Get All Actors Of Class.
Select the node to place it in your graph.

13. Set the value of the purple (class) node to King. You can type king in the search bar
to make locating the class in the list easier.

Chapter 8

243

14. Drag from the blue grid (object array) node out into empty space and place a get node.

15. Drag away from the blue output pin of the get node, and place a Not Equal
(object) node.

16. Connect the red (bool) pin of the Not Equal node to a Branch node, and wire the
execution pin of Branch to our Get All Actors Of Class node.

Integrating C++ and the Unreal Editor

244

17. Connect the True pin of the branch to the Bind Event to OnKing Death node.

Note that you will probably have to untick Context Sensitive in the context
menu for the Bind Event node to be visible.

18. Drag out the red pin on the Bind Event node, and select Add Custom Event… in the
context menu which appears after you release your left mouse button.

Chapter 8

245

19. Give your event a name, then connect the white execution pin to a new node
named Flee.

20. Verify that your Blueprint looks like the following figure:

21. Drag a copy of your King class into the level, then add a few BPPeasant instances
around it in a circle.

Integrating C++ and the Unreal Editor

246

22. Open the level Blueprint. Inside it, drag away from BeginPlay, and add a Delay
node. Set the delay to 5 seconds.

23. With your King instance selected in the level, right-click in the graph editor for the
Level Blueprint.

24. Select Call function on King 1, and look in the King category for a function
called Die.

25. Select Die, then connect its execution pin to the output execution pin from the delay.

Chapter 8

247

26. When you play your level, you should see that the king dies after 5 seconds, and the
peasants all wail and flee directly away from the king.

How it works…
1. We create a new actor (based on StaticMeshActor for convenience, as it saves

us having to declare or create a Static Mesh component for the Actor visual
representation).

2. We declare a dynamic multicast delegate using the DECLARE_DYNAMIC_
MULTICAST_DELEGATE_OneParam macro. Dynamic multicast delegates allow an
arbitrary number of objects to subscribe (listen) and unsubscribe (stop listening) so
that they will be notified when the delegate is broadcast.

3. The macro takes a number of arguments—the type name of the new delegate
signature being created, the type of the signature's parameter, then the name
of the signature's parameter.

4. We also add a function to King that will allow us to tell it to die. Because
we want to expose the function to Blueprints for prototyping, we mark it as
BlueprintCallable.

5. The DECLARE_DYNAMIC_MULTICAST_DELEGATE macro that we used earlier only
declared a type; it didn't declare an instance of the delegate, so we do that now,
referencing the type name that we provided earlier when invoking the macro.

6. Dynamic multicast delegates can be marked BlueprintAssignable in their
UPROPERTY declaration. This indicates to Unreal that the Blueprint system can
dynamically assign events to the delegate that will be called when the delegate's
Broadcast function is called.

Integrating C++ and the Unreal Editor

248

7. As always, we assign a simple mesh to our King so that it has a visual representation
in the game scene.

8. Within the Die function, we call Broadcast on our own delegate. We specified that
the delegate would have a parameter that is a pointer to the king which died, so we
pass this pointer as a parameter to the broadcast function.

If you want the king to be destroyed, rather than play an animation
or other effect when it dies, you would need to change the
delegate's declaration and pass in a different type. For example,
you could use FVector, and simply pass in the location of
the dead king directly so that the peasants could still flee
appropriately.
Without this, you potentially could have a situation where the
King pointer is valid when Broadcast is called, but the call to
Actor::Destroy() invalidates it before your bound functions
are executed.

9. Within our next StaticMeshActor subclass, called Peasant, we initialize the
static mesh component as usual using, a different shape to the one that we used
for the King.

10. Inside the implementation of the peasant's Flee function, we simulate the peasants
playing sound by printing a message on the screen.

11. We then calculate a vector to make the peasants flee by first finding a vector from the
dead king to this peasant's location.

12. We normalize the vector to retrieve a unit vector (with a length of 1) pointing
in the same direction.

13. Scaling the normalized vector and adding it to our current location calculates
a position at a fixed distance, in the exact direction for the peasant to be fleeing
directly away from the dead king.

14. SetActorLocation is then used to actually teleport the peasants to that location.

If you used a Character with an AI controller, you could have the Peasant
pathfind to the target location rather than teleporting. Alternatively, you
could use a Lerp function invoked during the peasant's Tick to make
them slide smoothly rather than jump directly to the location.

See also
 f Look at Chapter 4, Actors and Components, for more extended discussions about

Actors and Components. Chapter 5, Handling Events and Delegates, discusses
events such as NotifyActorOverlap.

Chapter 8

249

Creating C++ enums that can be used in
Blueprint

Enums are commonly used in C++ as flags or inputs to switch statements. However, what if
you want to pass an enum value to or from C++ from a Blueprint? Alternatively, if you want
to use a switch statement in Blueprint that uses an enum from C++, how do you let the
Blueprint editor know that your enum should be accessible within the editor? This recipe
shows you how to make enums visible in Blueprint.

How to do it…
1. Create a new StaticMeshActor class called Tree using the editor.

2. Insert the following code above the class declaration:
UENUM(BlueprintType)
enum TreeType
{
 Tree_Poplar,
 Tree_Spruce,
 Tree_Eucalyptus,
 Tree_Redwood
};

3. Add the following UPROPERTY in the Tree class:
UPROPERTY(BlueprintReadWrite)
TEnumAsByte<TreeType> Type;

4. Add the following to the Tree constructor:
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cylinder.Cylinder'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()
->SetMobility(EComponentMobility::Movable);

5. Create a new Blueprint class, called MyTree, based on Tree.

6. Inside the blueprint editor for MyTree, click on the Construction Script tab.

Integrating C++ and the Unreal Editor

250

7. Right-click in the empty window, and type treetype. There is a Get number of
entries in TreeType node.

8. Place it, and then connect its output pin to a Random Integer node.

9. Connect the output of the random integer to a ToByte node.

Chapter 8

251

10. In the Variables section of the Blueprint panel, expand Tree and select Type.

11. Drag this into the graph, and select Set when you see a small context menu
appear.

12. Connect the output of the ToByte node to the input of the SET Type node. You'll see
an extra conversion node automatically appear.

13. Lastly, connect the execution pin of Construction Script to the SET Type node's
execution pin.

Integrating C++ and the Unreal Editor

252

14. Your Blueprint should look like the following:

15. To verify that the blueprint is correctly functioning and randomly assigning a
type to our tree, we are going to add some nodes to the Event Graph.

16. Place a Print String node after the Event BeginPlay event node.

17. Place a Format Text node, and connect its output to the input of the Print
String node. A conversion node will be added for you.

Chapter 8

253

18. Inside the Format Text node, add My Type is {0}! to the textbox.

19. Drag Type from the variables section of the Blueprint into the graph selecting Get
from the menu.

20. Add an Enum to Name node to Type output pin.

Integrating C++ and the Unreal Editor

254

21. Connect the Name output to the input pin on Format Text labelled 0.

22. Your Event Graph should now look like the following:

23. Drag a few copies of your Blueprint into the level and hit Play. You should see a
number of trees printing information regarding their type, verifying that types are
being randomly assigned by the Blueprint code that we created.

How it works…
1. As usual, we use StaticMeshActor as the base class for our Actor so that we can

easily give it a visual representation in the level.

2. Enumerated types are exposed to the reflection system using the UENUM macro.

3. We mark the enum as Blueprint-available using the BlueprintType specifier.

Chapter 8

255

4. The enum declaration is just the same as we would use in any other context.

5. Our Tree requires a TreeType. Because tree has tree-type is the
relationship we want to embody, we include an instance of TreeType in our Tree
class.

6. As usual, we need to use UPROPERTY() to make the member variable
accessible to the reflection system.

7. We use the BlueprintReadWrite specifier to mark the property as having
both get and set support within Blueprint.

8. Enumerated types require being wrapped in the TEnumAsByte template when used
in UPROPERTY, so we declare an instance of TEnumAsByte<TreeType> as the
Tree's Type variable.

9. The constructor changes for Tree are simply the standard load and initialize
our static mesh component preamble used in other recipes.

10. We create a Blueprint that inherits from our Tree class so that we can
demonstrate the Blueprint-accessibility of the TreeType enum.

11. In order to have the Blueprint assign a type to the tree at random when we
create an instance, we need to use the Blueprint Construction Script.

12. Within the Construction Script, we calculate the number of entries in the
TreeType enum.

13. We generate a random number, and use that as an index in the TreeType
enum type to retrieve a value to store as our Type.

14. The Random number node, however, returns integers. Enumerated types are
treated as bytes in Blueprint, so we need to use a ToByte node, which can then be
implicitly converted by Blueprint into an enum value.

15. Now that we have Construction Script assigning a type to our tree instances as they
are created, we need to display the tree's type at runtime.

16. We do so with the graph attached to the BeginPlay event within the Event
Graph tab.

17. To display text on screen, we use a Print String node.

18. To perform string substitution and print our type out as a human-readable
string, we use the Format Text node.

19. The Format Text node takes terms enclosed in curly braces, and allows
you to substitute other values for those terms returning the final string.

20. To substitute our Type into the Format Text node, we need to convert our
variable stores from the enum value into the actual name of the value.

21. We can do so by accessing our Type variable, then using the Enum to Name node.

Integrating C++ and the Unreal Editor

256

22. Name, or FNames in native code, are a type of variable that can be converted to
strings by Blueprint, so we can connect our Name to the input on the Format Text
node.

23. When we hit play, the graph executes retrieving the type of tree instances placed in
the level, and printing the names to the screen.

Editing class properties in different places
in the editor

When developing with Unreal, it is common for programmers to implement properties on
Actors or other objects in C++, and make them visible to the editor for designer use. However,
sometimes it makes sense to view a property, or to make it editable, but only on the object's
default state. Sometimes the property should only be modifiable at runtime with the default
specified in C++. Fortunately, there are some specifiers that can help us restrict when a
property is available.

How to do it…
1. Create a new Actor class in the editor called PropertySpecifierActor.

2. Add the following property definitions to the class:
UPROPERTY(EditDefaultsOnly)
bool EditDefaultsOnly;
UPROPERTY(EditInstanceOnly)
bool EditInstanceOnly;
UPROPERTY(EditAnywhere)
bool EditAnywhere;
UPROPERTY(VisibleDefaultsOnly)
bool VisibleDefaultsOnly;
UPROPERTY(VisibleInstanceOnly)
bool VisibleInstanceOnly;
UPROPERTY(VisibleAnywhere)
bool VisibleAnywhere;

3. Compile your code and launch the editor.

4. Create a new blueprint based on the class.

Chapter 8

257

5. Open the blueprint, and look at the Class Defaults section.

6. Note which properties are editable and visible.

7. Place instances in the level, and view their Details panels.

8. Note that a different set of properties are editable.

Integrating C++ and the Unreal Editor

258

How it works…
1. When specifying UPROPERTY, we can indicate where we want that value to be

available inside the Unreal editor.

2. Visible* prefixes indicate that the value is viewable in the Details panel for the
indicated object. The value won't be editable, however.

3. This doesn't mean that the variable is a const qualifier; however, native code can
change the value, for instance.

4. Edit* prefixes indicate that the property can be altered within the Details
panels inside the editor.

5. InstanceOnly as a suffix indicates that the property will only be displayed in the
Details panels for instances of your class that have been placed into the game. They
won't be visible in the Class Defaults section of the Blueprint editor, for example.

6. DefaultsOnly is the inverse of InstanceOnly— UPROPERTY will only display in
the Class Defaults section, and can't be viewed on individual instances within the
level.

7. The suffix Anywhere is the combination of the two previous suffixes—the UPROPERTY
will be visible in all Details panels that inspect either the object's defaults or a
particular instance in the level.

See also
 f This recipe makes the property in question visible in the inspector, but doesn't allow

the property to be referenced in the actual Blueprint Event Graph. See the next recipe
for a description of how to make that possible.

Making properties accessible in the
Blueprint editor graph

The specifiers mentioned in the previous recipe are all well and good, but they only control
the visibility of UPROPERTY in the Details panel. By default, even with those specifiers used
appropriately, UPROPERTY won't be viewable or accessible in the actual editor graph for use
at runtime.

Other specifiers, which can optionally be used in conjunction with the ones in the previous
recipe, can be used to allow interacting with properties in the Event Graph.

Chapter 8

259

How to do it…
1. Create a new Actor class called BlueprintPropertyActor using the editor

wizard.

2. Add the following UPROPERTY to the actor using Visual Studio:
UPROPERTY(BlueprintReadWrite, Category = Cookbook)
bool ReadWriteProperty;
UPROPERTY(BlueprintReadOnly, Category = Cookbook)
bool ReadOnlyProperty;

3. Compile your project, and start the editor.

4. Create a Blueprint class based on your BlueprintPropertyActor, and
open its graph.

5. Verify that the properties are visible under the category Cookbook in the Variables
section of the My Blueprint panel.

6. Left-click and drag the ReadWrite property into the event graph, and select Get.

7. Repeat the previous step selecting Set.

Integrating C++ and the Unreal Editor

260

8. Drag the ReadOnly property into the graph, and note that the Set node is disabled.

How it works…
1. BlueprintReadWrite as a UPROPERTY specifier indicates to the Unreal Header

Tool that the property should have both Get and Set operations exposed for use in
Blueprints.

2. BlueprintReadOnly is, as the name implies, a specifier that only allows Blueprint
to retrieve the value of the property; never set it.

3. BlueprintReadOnly can be useful when a property is set by native code,
but should be accessible within Blueprint.

4. It should be noted that BlueprintReadWrite and BlueprintReadOnly don't
specify anything about the property being accessible in the Details panels or the My
Blueprint section of the editor—these specifiers only control the generation of the
getter/setter nodes for use in Blueprint graphs.

Responding to property – changed events
from the editor

When a designer changes the properties of an Actor placed in the level, it is often important
to show any visual results of that change immediately rather than just when the level is
simulated or played.

When changes are made using the Details panels, there's a special event that the editor
emits called PostEditChangeProperty, which gives the class instance a chance to
respond to the property being edited.

This recipe shows you how to handle PostEditChangeProperty for immediate in-editor
feedback.

Chapter 8

261

How to do it…
1. Create a new Actor called APostEditChangePropertyActor based on

StaticMeshActor.

2. Add the following UPROPERTY to the class:
UPROPERTY(EditAnywhere)
bool ShowStaticMesh;

3. Add the following function definition:
virtual void PostEditChangeProperty(FPropertyChangedEvent&
PropertyChangedEvent) override;

4. Add the following to the class constructor:
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cone.Cone'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()
->SetMobility(EComponentMobility::Movable);
ShowStaticMesh = true;

5. Implement PostEditChangeProperty:
void
APostEditChangePropertyActor::PostEditChangeProperty(FPrope
rtyChangedEvent& PropertyChangedEvent)
{
 if (PropertyChangedEvent.Property != nullptr)
 {
 const FName PropertyName(PropertyChangedEvent.Property
 ->GetFName());
 if (PropertyName ==
 GET_MEMBER_NAME_CHECKED(APostEditChangePropertyActor,
 ShowStaticMesh))
 {
 if (GetStaticMeshComponent() != nullptr)
 {
 GetStaticMeshComponent()
 ->SetVisibility(ShowStaticMesh);

Integrating C++ and the Unreal Editor

262

 }
 }
 }
 Super::PostEditChangeProperty(PropertyChangedEvent);
}

6. Compile your code, and launch the editor.

7. Drag an instance of your class into the game world, and verify that toggling the
boolean value for ShowStaticMesh toggles the visibility of the mesh in the
editor viewport.

Chapter 8

263

How it works…
1. We create a new Actor based on StaticMeshActor for easy access to a visual

representation via the Static Mesh.

2. UPROPERTY is added to give us a property to change, to cause
PostEditChangeProperty events to be triggered.

3. PostEditChangeProperty is a virtual function defined in Actor.

4. As a result, we override the function in our class.

5. Within our class constructor, we initialize our mesh as usual, and set the
default state of our bool property to match the visibility of the component it controls.

6. Inside PostEditChangeProperty, we first check that the property is valid.

7. Assuming it is, we retrieve the name of the property using GetFName().

8. FNames are stored internally by the engine as a table of unique values.

9. Next we need to use the GET_MEMBER_NAME_CHECKED macro. The macro
takes a number of parameters.

10. The first one is the name of the class to check.

11. The second parameter is the property to check the class for.

12. The macro will, at compile-time, verify that the class contains the member
specified by name.

13. We compare the class member name that the macro returns against the
name that our property contains.

14. If they are the same, then we verify that our StaticMeshComponent is
initialized correctly.

15. If it is, we set its visibility to match the value of our ShowStaticMesh Boolean.

Implementing a native code Construction
Script

Within Blueprint, Construction Script is an event graph that runs any time a property is
changed on the object it is attached to—whether from being dragged in the editor viewport
or changed via direct entry in a Details panel.

Construction scripts allow the object in question to 'rebuild' itself based on its new location,
for instance, or to change the components it contains based on user-selected options.

When coding in C++ with Unreal Engine, the equivalent concept is the OnConstruction
function.

Integrating C++ and the Unreal Editor

264

How to do it…
1. Create a new Actor called AOnConstructionActor based on

StaticMeshActor.

2. Add the following UPROPERTY to the class:
UPROPERTY(EditAnywhere)
bool ShowStaticMesh;

3. Add the following function definition:
virtual void OnConstruction(const FTransform& Transform)
override;

4. Add the following to the class constructor:
auto MeshAsset =
ConstructorHelpers::FObjectFinder<UStaticMesh>(TEXT("Static
Mesh'/Engine/BasicShapes/Cone.Cone'"));
if (MeshAsset.Object != nullptr)
{
 GetStaticMeshComponent()
 ->SetStaticMesh(MeshAsset.Object);
 GetStaticMeshComponent()->bGenerateOverlapEvents = true;
}
GetStaticMeshComponent()
->SetMobility(EComponentMobility::Movable);
ShowStaticMesh = true;

5. Implement OnConstruction:
void AOnConstructionActor::OnConstruction(const FTransform&
Transform)
{
 GetStaticMeshComponent()->SetVisibility(ShowStaticMesh);
}

6. Compile your code, and launch the editor.

7. Drag an instance of your class into the game world, and verify that toggling
the Boolean value for ShowStaticMesh toggles the visibility of the mesh in
the editor viewport.

8. OnConstruction does not currently run for C++ actors placed in a level if
they are moved.

9. To test this, place a breakpoint in your OnConstruction function, then move your
actor around the level.

Chapter 8

265

To place a breakpoint, place your cursor on the desired
line, and hit F9 in Visual Studio.

10. You'll notice that the function doesn't get called, but if you toggle the
ShowStaticMesh Boolean, it does, causing your breakpoint to trigger.

In order to see why, take a look at AActor::PostEditMove:
UBlueprint* Blueprint = Cast<UBlueprint>(GetClass()
->ClassGeneratedBy);
if(Blueprint && (Blueprint-
>bRunConstructionScriptOnDrag || bFinished)
&& !FLevelUtils::IsMovingLevel())
{
 FNavigationLockContext NavLock(GetWorld(),
 ENavigationLockReason::AllowUnregister);
 RerunConstructionScripts();
}

The top line here casts UClass for the current object to UBlueprint, and
will only run the construction scripts and OnConstruction again if the
class is a Blueprint.

How it works…
1. We create a new Actor based on StaticMeshActor for easy access to a visual

representation via the Static Mesh.

2. UPROPERTY is added to give us a property to change—to cause
PostEditChangeProperty events to be triggered.

3. OnConstruction is a virtual function defined in Actor.

4. As a result, we override the function in our class.

5. Within our class constructor, we initialize our mesh as usual, and set the default state
of our bool property to match the visibility of the component that it controls.

6. Inside OnConstruction, the actor rebuilds itself using any properties that are
required for doing so.

7. For this simple example, we set the visibility of the mesh to match the value
of our ShowStaticMesh property.

8. This could also be extended to changing other values based on the value of the
ShowStaticMesh variable.

Integrating C++ and the Unreal Editor

266

9. You'll note that we don't explicitly filter on a particular property being changed like the
previous recipe does with PostEditChangeProperty.

10. The OnConstruction script runs in its entirety for every property that gets
changed on the object.

11. It has no way of testing which property was just edited, so you need to be judicious
about placing computationally intensive code within it.

Creating a new editor module
The following recipes all interact with editor mode-specific code and engine modules. As a
result, it is considered good practice to create a new module that will only be loaded when
the engine is running in editor mode so that we can place all our editor-only code inside it.

How to do it…
1. Open your project's .uproject file in a text editor such as Notepad or Notepad++.

2. Add the bolded section of the following to the file:
{
 "FileVersion": 3,
 "EngineAssociation": "4.11",
 "Category": "",
 "Description": "",
 "Modules": [
 {
 "Name": "UE4Cookbook",
 "Type": "Runtime",
 "LoadingPhase": "Default",
 "AdditionalDependencies": [
 "Engine",
 "CoreUObject"
]
 },
 {
 "Name": "UE4CookbookEditor",
 "Type": "Editor",
 "LoadingPhase": "PostEngineInit",
 "AdditionalDependencies": [
 "Engine",
 "CoreUObject"
]
 }
]
}

Chapter 8

267

3. Note the comma after the first module before the second set of curly braces.

4. In your source folder, create a new folder using the same name as you specified in
your uproject file (in this instance, "UE4CookbookEditor").

5. Inside this new folder, create a file called UE4CookbookEditor.Build.cs.

6. Insert the following into the file:
using UnrealBuildTool;

public class UE4CookbookEditor : ModuleRules
{
 public UE4CookbookEditor(TargetInfo Target)
 {
 PublicDependencyModuleNames.AddRange(new string[] {
 "Core", "CoreUObject", "Engine", "InputCore", "RHI",
 "RenderCore", "ShaderCore" });
 PublicDependencyModuleNames.Add("UE4Cookbook");
 PrivateDependencyModuleNames.AddRange(new string[] {
 "UnrealEd" });
 }
}

7. Create a new file called UE4CookbookEditor.h and add the following:
#pragma once
#include "Engine.h"
#include "ModuleManager.h"
#include "UnrealEd.h"

class FUE4CookbookEditorModule: public IModuleInterface
{
};

8. Lastly, create a new source file called UE4CookbookEditor.cpp.

9. Add the following code:
#include "UE4CookbookEditor.h"
IMPLEMENT_GAME_MODULE(FUE4CookbookEditorModule,
UE4CookbookEditor)

10. Finally, close Visual Studio if you have it open, then right-click on the .uproject file,
and select Generate Visual Studio Project files.

Integrating C++ and the Unreal Editor

268

11. You should see a small window launch, display a progress bar, and then close.

12. You can now launch Visual Studio, verify that your new module is visible in
the IDE, and compile your project successfully.

13. The module is now ready for the next set of recipes.

Code changes made in this editor module won't support hot-reloading
in the same way that code in runtime modules does. If you get a
compilation error that mentions changes to generated header files,
simply close the editor, and rebuild from within your IDE instead.

How it works…
1. Unreal projects use the .uproject file format to specify a number of different

pieces of information about the project.

2. This information is used to inform the Header and Build tools about the modules that
comprise this project, and is used for code generation and makefile creation.

3. The file uses JSON-style formatting.

4. These include the following:

 � The engine version that the project should be opened in

 � A list of modules that are used in the project

 � A list of module declarations

5. Each of these module declarations contain the following:

 � The name of the module.

 � The type of the module—is it an editor module (only runs in editor builds, has
access to editor-only classes) or a Runtime module (runs in both editor and
Shipping builds).

 � The loading phase of the module—modules can be loaded at different points
during program startup. This value specifies the point at which the module
should be loaded, for example, if there are dependencies in other modules
that should be loaded first.

 � A list of dependencies for the module. These are essential modules that
contain exported functions or classes that the module relies on.

Chapter 8

269

6. We ad a new module to the uproject file. The module's name is
UE4CookbookEditor (conventionally, Editor should be appended to the main
game module for an editor module).

7. This module is marked as an editor module, and is set to load after the
baseline engine so that it can use the classes declared in Engine code.

8. Our module's dependencies are left at the default values for now.

9. With the uproject file altered to contain our new module, we need a build
script for it.

10. Build scripts are written in C#, and take the name <ModuleName>.Build.
cs.

11. C#, unlike C++, doesn't use a separate header file and implementation—it's all there
in the one .cs file.

12. We want to access the classes declared in the UnrealBuildTool module,
so we include a using statement to indicate that we want to access that namespace.

13. We create a public class with the same name as our module, and which
inherits from ModuleRules.

14. Inside our constructor, we add a number of modules to the dependencies of
this module.

15. There are both private dependencies and public dependencies. According to the code
of the ModuleRules class, Public dependencies are modules that your module's
public header files depend on. Private dependencies are modules that the private
code depends on. Anything used in both public headers and private code should go
into the PublicDependencyModuleNames array.

16. You'll note that our PublicDependencyModuleNames array contains our main
game module. This is because some recipes in this chapter will extend the editor to
better support the classes defined within our main game module.

17. Now that we've told the build system that we have a new module to build through the
project file, and we've specified how to build the module with the build script, we need
to create the C++ class that is our actual module.

18. We create a header file that includes the Engine header, the ModuleManager header,
and the UnrealEd header.

19. We include ModuleManager because it defines IModuleInterface, the class that
our module will inherit from.

20. We also include UnrealEd because we're writing an editor module that will need
to access the editor functionality.

21. The class we declare inherits from IModuleInterface, and takes its name from
the usual prefix, F, followed by the module name.

22. Inside the .cpp file, we include our module's header, and then use the
IMPLEMENT_GAME_MODULE macro.

Integrating C++ and the Unreal Editor

270

23. IMPLEMENT_GAME_MODULE declares an exported C function,
InitializeModule(), which returns an instance of our new module class.

24. This means that Unreal can simply call InitializeModule() on any library that
exports it to retrieve a reference to the actual module implementation without
needing to know what class it is.

25. Having added our new module, we now need to rebuild our Visual Studio solution, so
we close Visual Studio and then regenerate the project files using the context menu.

26. With the project rebuilt, the new module will be visible in Visual Studio, and we can
add code to it as usual.

Creating new toolbar buttons
If you have created a custom tool or window for display within the editor, you probably need
some way to let the user make it appear. The easiest way to do this is to create a toolbar
customization that adds a new toolbar button, and have it display your window when clicked.

Create a new engine module by following the previous recipe, as we'll need it to initialize our
toolbar customization.

How to do it…
1. Create a new header file, and insert the following class declaration:

#pragma once
#include "Commands.h"
#include "EditorStyleSet.h"
/**
 *
 */
class FCookbookCommands : public
TCommands<FCookbookCommands>
{
 public:
 FCookbookCommands()
 :TCommands<FCookbookCommands>
 (FName(TEXT("UE4_Cookbook")),
 FText::FromString("Cookbook Commands"), NAME_None,
 FEditorStyle::GetStyleSetName())
 {
 };
 virtual void RegisterCommands() override;

 TSharedPtr<FUICommandInfo> MyButton;
};

Chapter 8

271

2. Implement the new class by placing the following in the .cpp file:
#include "UE4CookbookEditor.h"
#include "Commands.h"
#include "CookbookCommands.h"

void FCookbookCommands::RegisterCommands()
{
 #define LOCTEXT_NAMESPACE ""
 UI_COMMAND(MyButton, "Cookbook", "Demo Cookbook Toolbar
 Command", EUserInterfaceActionType::Button,
 FInputGesture());
 #undef LOCTEXT_NAMESPACE
}

3. Add the following within your module class:
virtual void StartupModule() override;
virtual void ShutdownModule() override;
TSharedPtr<FExtender> ToolbarExtender;
TSharedPtr<const FExtensionBase> Extension;
void MyButton_Clicked()
{
 TSharedRef<SWindow> CookbookWindow = SNew(SWindow)
 .Title(FText::FromString(TEXT("Cookbook Window")))
 .ClientSize(FVector2D(800, 400))
 .SupportsMaximize(false)
 .SupportsMinimize(false);

 IMainFrameModule& MainFrameModule =
 FModuleManager::LoadModuleChecked<IMainFrameModule>
 (TEXT("MainFrame"));

 if (MainFrameModule.GetParentWindow().IsValid())
 {
 FSlateApplication::Get().AddWindowAsNativeChild
 (CookbookWindow,MainFrameModule.GetParentWindow()
 .ToSharedRef());
 }
 else
 {
 FSlateApplication::Get().AddWindow(CookbookWindow);
 }
};
void AddToolbarExtension(FToolBarBuilder &builder)
{

Integrating C++ and the Unreal Editor

272

 FSlateIcon IconBrush =
 FSlateIcon(FEditorStyle::GetStyleSetName(),
 "LevelEditor.ViewOptions",
 "LevelEditor.ViewOptions.Small");

 builder.AddToolBarButton(FCookbookCommands::Get()
 .MyButton, NAME_None, FText::FromString("My Button"),
 FText::FromString("Click me to display a message"),
 IconBrush, NAME_None);
};

4. Be sure to #include the header file for your command class as well.

5. We now need to implement StartupModule and ShutdownModule:
void FUE4CookbookEditorModule::StartupModule()
{
 FCookbookCommands::Register();
 TSharedPtr<FUICommandList> CommandList =
 MakeShareable(new FUICommandList());
 CommandList->MapAction(FCookbookCommands::Get().MyButton,
 FExecuteAction::CreateRaw(this,
 &FUE4CookbookEditorModule::MyButton_Clicked),
 FCanExecuteAction());
 ToolbarExtender = MakeShareable(new FExtender());
 Extension = ToolbarExtender
 ->AddToolBarExtension("Compile", EExtensionHook::Before,
 CommandList, FToolBarExtensionDelegate::CreateRaw(this,
 &FUE4CookbookEditorModule::AddToolbarExtension));

 FLevelEditorModule& LevelEditorModule =
 FModuleManager::LoadModuleChecked<FLevelEditorModule>
 ("LevelEditor");
 LevelEditorModule.GetToolBarExtensibilityManager()
 ->AddExtender(ToolbarExtender);
}

void FUE4CookbookEditorModule::ShutdownModule()
{
 ToolbarExtender
 ->RemoveExtension(Extension.ToSharedRef());
 Extension.Reset();
 ToolbarExtender.Reset();
}

Chapter 8

273

6. Add the following includes:
#include "LevelEditor.h"
#include "SlateBasics.h"
#include "MultiBoxExtender.h"
#include "Chapter8/CookbookCommands.h"

7. Compile your project, and start the editor.

8. Verify that there's a new button on the toolbar in the main level editor, which can be
clicked on to open a new window:

How it works…
1. Unreal's editor UI is based on the concept of commands. Commands are a design

pattern that allows looser coupling between the UI and the actions that it needs to
perform.

2. In order to create a class that contains a set of commands, it is necessary to inherit
from TCommands.

3. TCommands is a template class that leverages the Curiously Recurring Template
Pattern (CRTP). The CRTP is used commonly throughout Slate UI code as a means
of creating compile-time polymorphism.

4. In the initializer list for FCookbookCommands constructor, we invoke the
parent class constructor, passing in a number of parameters.

5. The first parameter is the name of the command set, and is a simple FName.

6. The second parameter is a tooltip/human readable string, and as such, uses
FText so it can support localization if necessary.

7. If there's a parent group of commands, the third parameter contains the name of the
group. Otherwise, it contains NAME_None.

8. The final parameter for the constructor is the Slate Style set that contains
any command icons that the command set will be using.

9. The RegisterCommands() function allows TCommands-derived classes to create
any command objects that they require. The resulting FUICommandInfo instances
returned from that function are stored inside the Commands class as members so
that UI elements or functions can be bound to the commands.

Integrating C++ and the Unreal Editor

274

10. This is why we have the member variable TSharedPtr<FUICommandInfo>
MyButton.

11. In the implementation for the class, we simply need to create our commands
in RegisterCommands.

12. The UI_COMMAND macro used to create an instance of FUICommandInfo
expects a localization namespace to be defined even if it is just an empty default
namespace.

13. As a result, we need to enclose our UI_COMMAND calls with #defines to set a valid
value for LOCTEXT_NAMESPACE even if we don't intend to use localization.

14. The actual UI_COMMAND macro takes a number of parameters.

15. The first parameter is the variable to store the FUICommandInfo in.

16. The second parameter is a human-readable name for the command.

17. The third parameter is a description for the command.

18. The fourth parameter is EUserInterfaceActionType. This enumeration
essentially specifies what sort of button is being created. It supports Button,
ToggleButton, RadioButton, and Check as valid types.

19. Buttons are simple generic buttons. A toggle button stores on and off states.
The radio button is similar to a toggle, but is grouped with other radio buttons, and
only one can be enabled at a time. Lastly, the checkbox displays a read-only checkbox
adjacent to the button.

20. The last parameter for UI_COMMAND is the input chord, or the combination of
keys required to activate the command.

21. This parameter is primarily useful for defining key combinations for hotkeys
linked to the command in question rather than buttons. As a result, we use an empty
InputGesture.

22. So we now have a set of commands, but we haven't told the engine we want to
add the set to the commands that show on the toolbar. We also haven't set up
what actually happens when the button is clicked. In order to do this, we need to
perform some initialization when our module begins, so we place some code into
the StartupModule/ShutdownModule functions.

23. Inside StartupModule, we call the static Register function on the
commands class that we defined earlier.

24. We then create a shared pointer to a list of commands using the MakeShareable
function.

Chapter 8

275

25. In the command list, we use MapAction to create a mapping, or association,
between the UICommandInfo object, which we set as a member of the
FCookbookCommands, and the actual function we want to execute when the
command is invoked.

26. You'll note that we don't explicitly set anything regarding what could be used to invoke
the command here.

27. To perform this mapping, we call the MapAction function. The first parameter
to MapAction is a FUICommandInfo object, which we can retrieve from
FCookbookCommands by using its static Get() method to retrieve the instance.

28. FCookbookCommands is implemented as a singleton—a class with a single instance
that exists throughout the application. You'll see the pattern in most places—there's a
static Get() method available in the engine.

29. The second parameter of the MapAction function is a delegate bound to the
function to be invoked when the command is executed.

30. Because UE4CookbookEditorModule is a raw C++ class rather than a
UObject, and we want to invoke a member function rather than a static function,
we use CreateRaw to create a new delegate bound to a raw C++ member function.

31. CreateRaw expects a pointer to the object instance, and a function reference to the
function to invoke on that pointer.

32. The third parameter for MapAction is a delegate to call to test if the action can be
executed. Because we want the command to be executable all the time, we can use
a simple pre-defined delegate that always returns true.

33. With an association created between our command and the action it should call, we
now need to actually tell the extension system that we want to add new commands to
the toolbar.

34. We can do this via the FExtender class, which can be used to extend menus,
context menus, or toolbars.

35. We initially create an instance of FExtender as a shared pointer so that our
extensions are uninitialized when the module is shut down.

36. We then call AddToolBarExtension on our new extender, storing the results in a
shared pointer so that we can remove it on module uninitialization.

37. AddToolBarExtension's first argument is the name of the extension point where
we want to add our extension.

38. To find where we want to place our extension, we first need to turn on the display of
extension points within the editor UI.

Integrating C++ and the Unreal Editor

276

39. To do so, open Editor Preferences in the Edit menu within the editor:

40. Open General | Miscellaneous, and select Display UIExtension Points:

Chapter 8

277

41. Restart the editor, and you should see green text overlaid on the editor UI, as in the
following screenshot:

42. The green text indicates UIExtensionPoint, and the text's value is the string we
should provide to the AddToolBarExtension function.

43. We're going to add our extension to the Compile extension point in this recipe, but of
course, you could use any other extension point you wish.

44. It's important to note that adding a toolbar extension to a menu extension point will
fail silently, and vice versa.

45. The second parameter to AddToolBarExtension is a location anchor relative to
the extension point specified. We've selected FExtensionHook::Before, so our
icon will be displayed before the compile point.

46. The next parameter is our command list containing mapped actions.

47. Finally, the last parameter is a delegate that is responsible for actually adding UI
controls to the toolbar at the extension point and the anchor that we specified earlier.

48. The delegate is bound to a function that has the form void (*func)
(FToolBarBuilder and builder). In this instance, it is a function called
AddToolbarExtension defined in our module class.

49. When the function is invoked, calling commands on the builder that add UI
elements will apply those elements to the location in the UI we specified.

50. Lastly, we need to load the level editor module within this function so that we can
add our extender to the main toolbar within the level editor.

51. As usual, we can use ModuleManager to load a module and return a
reference to it.

52. With that reference in hand, we can get the Toolbar Extensibility Manager for
the module, and tell it to add our Extender.

53. While this may seem cumbersome at first, the intention is to allow you to
apply the same toolbar extension to multiple toolbars in different modules if you
would like to create a consistent UI layout between different editor windows.

54. The counterpart to initializing our extension, of course, is removing it when our
module is unloaded. To do that, we remove our extension from the extender, then
null the shared pointers for both Extender and extension reclaiming their memory
allocation.

Integrating C++ and the Unreal Editor

278

55. The AddToolBarExtension function within the editor module is the one which
is responsible for actually adding UI elements to the toolbar that can invoke our
commands.

56. It does this by calling functions on the FToolBarBuilder instance passed
in as a function parameter.

57. Firstly, we retrieve an appropriate icon for our new toolbar button using the
FSlateIcon constructor.

58. With the icon loaded, we invoke AddToolBarButton on the builder
instance.

59. AddToolbarButton has a number of parameters.

60. The first parameter is the command to bind to—you'll notice it's the same MyButton
member that we accessed earlier when binding the action to the command.

61. The second parameter is an override for the extension hook we specified earlier, but
we don't want to override that so we can use NAME_None.

62. The third parameter is a label override for the new button that we create.

63. Parameter four is a tooltip for the new button.

64. The second-last parameter is the button's icon, and the last parameter is a name used
to refer to this button element for highlighting support if you wish to use the in-editor
tutorial framework.

Creating new menu entries
The workflow for creating new menu entries is almost identical to that for creating new toolbar
buttons, so this recipe will build on the previous one, and show you how to add the command
created therein to a menu rather than a toolbar.

How to do it…
1. Create a new function in your module class:

void AddMenuExtension(FMenuBuilder &builder)
{
 FSlateIcon IconBrush =
 FSlateIcon(FEditorStyle::GetStyleSetName(),
 "LevelEditor.ViewOptions",
 "LevelEditor.ViewOptions.Small");

 builder.AddMenuEntry(FCookbookCommands::Get().MyButton);
};

Chapter 8

279

2. Find the following code within the StartupModule function:
Extension = ToolbarExtender->AddToolBarExtension("Compile",
EExtensionHook::Before, CommandList,
FToolBarExtensionDelegate::CreateRaw(this,
&FUE4CookbookEditorModule::AddToolbarExtension));
LevelEditorModule.GetToolBarExtensibilityManager()-
>AddExtender(ToolbarExtender);

3. Replace the preceding code with the following:
Extension = ToolbarExtender
->AddMenuExtension("LevelEditor", EExtensionHook::Before,
CommandList, FMenuExtensionDelegate::CreateRaw(this,
&FUE4CookbookEditorModule::AddMenuExtension));
LevelEditorModule.GetMenuExtensibilityManager()
->AddExtender(ToolbarExtender);

4. Compile your code, and launch the editor.

5. Verify that you now have a menu entry under the Window menu that displays the
Cookbook window when clicked. If you followed the preceding recipe, you'll also see
the green text listing the UI extension points, including the one we used in this recipe
(LevelEditor).

How it works…
1. You'll note that ToolbarExtender is of type FExtender rather than

FToolbarExtender or FMenuExtender.

2. By using a generic FExtender class rather than a specific subclass, the framework
allows you to create a series of command-function mappings that can be used on
either menus or toolbars. The delegate that actually adds the UI controls (in this
instance, AddMenuExtension) can link those controls to a subset of commands
from your FExtender.

3. This way, you don't need to have different TCommands classes for different types of
extensions, and you can place the commands into a single central class regardless of
where those commands are invoked from the UI.

Integrating C++ and the Unreal Editor

280

4. As a result, the only changes that are required are as follows:

1. Swapping calls to AddToolBarExtension with AddMenuExtension.

2. Creating a function that can be bound to FMenuExtensionDelegate
rather than FToolbarExtensionDelegate.

3. Adding the extender to a Menu Extensibility Manager rather than a Toolbar
Extensibility Manager.

Creating a new editor window
Custom editor windows are useful when you have a new tool with user-configurable settings,
or want to display some information to people using your customized editor.

Be sure to have an editor module by following the recipe earlier in this chapter before you
start.

Read through either the Creating new menu entries or Creating new toolbar buttons recipes
so that you can create a button within the editor that will launch our new window.

How to do it…
1. Inside your command's bound function, add the following code:

TSharedRef<SWindow> CookbookWindow = SNew(SWindow)
.Title(FText::FromString(TEXT("Cookbook Window")))
.ClientSize(FVector2D(800, 400))
.SupportsMaximize(false)
.SupportsMinimize(false)
[
 SNew(SVerticalBox)
 +SVerticalBox::Slot()
 .HAlign(HAlign_Center)
 .VAlign(VAlign_Center)
 [
 SNew(STextBlock)
 .Text(FText::FromString(TEXT("Hello from Slate")))
]
];
IMainFrameModule& MainFrameModule =
FModuleManager::LoadModuleChecked<IMainFrameModule>(TEXT
("MainFrame"));

if (MainFrameModule.GetParentWindow().IsValid())
{

Chapter 8

281

 FSlateApplication::Get().AddWindowAsNativeChild
 (CookbookWindow, MainFrameModule.GetParentWindow()
 .ToSharedRef());
}
else
{
 FSlateApplication::Get().AddWindow(CookbookWindow);
}

2. Compile your code, and launch the editor.

3. When you activate the command you created, either by selecting the custom menu
option or the toolbar option that you added, you should see that the window has been
displayed with some centered text in the middle:

How it works…
1. As should be self-explanatory, your new editor window won't display itself, and so, at

the start of this recipe, it is mentioned that you should have implemented a custom
menu or toolbar button or a console command that we can use to trigger the display
of our new window.

2. All of Slate's widgets are usually interacted with in the form of TSharedRef< > or
TSharedPtr< >.

3. The SNew() function returns a TSharedRef templated on the requested widget
class.

Integrating C++ and the Unreal Editor

282

4. As has been mentioned elsewhere in this chapter, Slate widgets have a number
of functions that they implement, which all return the object that the function was
invoked on. This allows for method chaining to be used to configure the object at
creation time.

5. This is what allows for the Slate syntax of <Widget>.Property(Value).
Property(Value).

6. The properties that are set on the widget in this recipe are the window title,
the window size, and whether the window can be maximized and minimized.

7. Once all the requisite properties on a widget have been set, the bracket operators
([]) can be used to specify the content to be placed inside the widget, for example,
a picture or label inside a button.

8. SWindow is a top-level widget with only one slot for child widgets, so we don't need to
add a slot for it ourselves. We place content into that slot by creating it inside the pair
of brackets.

9. The content we create is SVerticalBox, which is a widget that can have an
arbitrary number of slots for child widgets that are displayed in a vertical list.

10. For each widget we want to place into the vertical list, we need to create
a slot.

11. The easiest way to do this is to use the overloaded + operator and the
SVerticalBox::Slot() function.

12. Slot() returns a widget like any other, so we can set properties on it like we
did on our SWindow.

13. This recipe centers the Slot's content on both horizontal and vertical axes using
HAlign and VAlign.

14. A Slot has a single child widget, and it's created inside the [] operators just as for
SWindow.

15. Inside the Slot content, we create a text block with some custom text.

16. Our new SWindow now has its child widgets added, but it isn't being displayed yet,
because it isn't added to the window hierarchy.

17. The main frame module is used to check if we have a top-level editor window, and if it
exists, our new window is added as a child.

18. If there's no top-level window to be added as a child to, then we use the Slate
Application singleton to add our window without a parent.

19. If you would like to see the hierarchy of the window we've created, you can use the
Slate Widget Reflector, which can be accessed via Window | Developer Tools |
Widget Reflector.

Chapter 8

283

20. If you select Pick Live Widget, and hover your cursor over the text in the center of our
custom window, you will be able to see the SWindow with our custom widgets added
to its hierarchy.

See also
 f Chapter 9, User Interfaces – UI and UMG, is all about UI, and will show you how to

add additional elements to your new custom window

Creating a new Asset type
At some point in your project, you might need to create a new custom Asset class, for example,
an Asset to store conversation data in an RPG.

In order to properly integrate these with Content Browser, you'll need to create a new
Asset type.

Integrating C++ and the Unreal Editor

284

How to do it…
1. Create a custom Asset based on UObject:

#pragma once

#include "Object.h"
#include "MyCustomAsset.generated.h"

/**
 *
 */
UCLASS()
class UE4COOKBOOK_API UMyCustomAsset : public UObject
{
 GENERATED_BODY()
 public:
 UPROPERTY(EditAnywhere, Category = "Custom Asset")
 FString Name;
};

2. Create a class called UCustomAssetFactory based on UFactory,
overriding FactoryCreateNew:
#pragma once

#include "Factories/Factory.h"
#include "CustomAssetFactory.generated.h"

/**
 *
 */
UCLASS()
class UE4COOKBOOK_API UCustomAssetFactory : public UFactory
{
 GENERATED_BODY()

 public:
 UCustomAssetFactory();

 virtual UObject* FactoryCreateNew(UClass* InClass,
 UObject* InParent, FName InName, EObjectFlags Flags,
 UObject* Context, FFeedbackContext* Warn, FName
 CallingContext) override;
};

3. Implement the class:
#include "UE4Cookbook.h"
#include "MyCustomAsset.h"
#include "CustomAssetFactory.h"

Chapter 8

285

UCustomAssetFactory::UCustomAssetFactory()
:Super()
{
 bCreateNew = true;
 bEditAfterNew = true;
 SupportedClass = UMyCustomAsset::StaticClass();
}

UObject* UCustomAssetFactory::FactoryCreateNew(UClass*
InClass, UObject* InParent, FName InName, EObjectFlags
Flags, UObject* Context, FFeedbackContext* Warn, FName
CallingContext)
{
 auto NewObjectAsset = NewObject<UMyCustomAsset>(InParent,
 InClass, InName, Flags);
 return NewObjectAsset;
}

4. Compile your code, and open the editor.

5. Right-click in Content Browser, and under the Miscellaneous tab of the Create
Advanced Asset section, you should see your new class, and be able to create
instances of your new custom type.

Integrating C++ and the Unreal Editor

286

How it works…
1. The first class is the actual object that can exist in the game at runtime. It's your

texture, data file, or curve data, whatever you require.

2. For the purpose of this recipe, the simplest example is an asset that has an FString
property to contain a name.

3. The property is marked as UPROPERTY so that it remains in memory, and
additionally marked as EditAnywhere so that it is editable on both, the default
object and on instances of it.

4. The second class is Factory. Unreal uses the Factory design pattern to
create instances of assets.

5. This means that there is a generic base Factory that uses virtual methods
to declare the interface of object creation, and then Factory subclasses are
responsible for creating the actual object in question.

6. The advantage of this approach is that the user-created subclass
can potentially instantiate one of its own subclasses if required; it hides the
implementation details regarding deciding which object to create away from the
object requesting the creation.

7. With UFactory as our base class, we include the appropriate header.

8. The constructor is overridden, because there are a number of properties that
we want to set for our new factory after the default constructor has run.

9. bCreateNew signifies that the factory is currently able to create a new
instance of the object in question from scratch.

10. bEditAfterNew indicates that we would like to edit the newly created
object immediately after creation.

11. The SupportedClass variable is an instance of UClass containing
reflection information about the type of object the factory will create.

12. The most significant function of our UFactory subclass is the actual factory
method—FactoryCreateNew.

13. FactoryCreateNew is responsible for determining the type of object that
should be created, and using NewObject to construct an instance of that type. It
passes the following parameters through to the NewObject call.

14. InClass is the class of object that will be constructed.

15. InParent is the object that should be containing the new object that will be created.
If this isn't specified, the object is assumed to go into the transient package, which
means that it won't be automatically saved.

Chapter 8

287

16. Name is the name of the object to be created.

17. Flags is a bitmask of creation flags that control things such as making the object
visible outside of the package it is contained in.

18. Within FactoryCreateNew, decisions can be made regarding which subclass
should be instantiated. Other initialization can also be performed; for example, if
there are sub-objects that require manual instantiation or initialization, they can be
added here.

19. An example from the engine code for this function is as follows:
UObject* UCameraAnimFactory::FactoryCreateNew(UClass*
Class,UObject* InParent,FName Name,EObjectFlags
Flags,UObject* Context,FFeedbackContext* Warn)
{
 UCameraAnim* NewCamAnim =
 NewObject<UCameraAnim>(InParent, Class, Name, Flags);
 NewCamAnim->CameraInterpGroup =
 NewObject<UInterpGroupCamera>(NewCamAnim);
 NewCamAnim->CameraInterpGroup->GroupName = Name;
 return NewCamAnim;
}

20. As can be seen here, there's a second call to NewObject to populate the
CameraInterpGroup member of the NewCamAnim instance.

See also
 f The Editing class properties in different places in the editor recipe earlier in this

chapter gives more context to the EditAnywhere property specifier

Creating custom context menu entries for
Assets

Custom Asset types commonly have special functions you wish to be able to perform on them.
For example, converting images to sprites is an option you wouldn't want to add to any other
Asset type. You can create custom context menu entries for specific Asset types in order to
make those functions accessible to users.

Integrating C++ and the Unreal Editor

288

How to do it…
1. Create a new class based on FAssetTypeActions_Base. You'll need to include

AssetTypeActions_Base.h in the header file.

2. Override the following virtual functions in the class:
virtual bool HasActions(const TArray<UObject*>& InObjects)
const override;
virtual void GetActions(const TArray<UObject*>& InObjects,
FMenuBuilder& MenuBuilder) override;
virtual FText GetName() const override;
virtual UClass* GetSupportedClass() const override;

virtual FColor GetTypeColor() const override;
virtual uint32 GetCategories() override;

3. Declare the following function:
void MyCustomAssetContext_Clicked();

4. Implement the declared functions in the .cpp file:
bool FMyCustomAssetActions::HasActions(const
TArray<UObject*>& InObjects) const
{
 return true;
}

void FMyCustomAssetActions::GetActions(const
TArray<UObject*>& InObjects, FMenuBuilder& MenuBuilder)
{
 MenuBuilder.AddMenuEntry(
 FText::FromString("CustomAssetAction"),
 FText::FromString("Action from Cookbook Recipe"),
 FSlateIcon(FEditorStyle::GetStyleSetName(),
 "LevelEditor.ViewOptions"),
 FUIAction(
 FExecuteAction::CreateRaw(this,
 &FMyCustomAssetActions::MyCustomAssetContext_Clicked),
 FCanExecuteAction()));
}

uint32 FMyCustomAssetActions::GetCategories()
{
 return EAssetTypeCategories::Misc;
}
FText FMyCustomAssetActions::GetName() const

Chapter 8

289

{
 return FText::FromString(TEXT("My Custom Asset"));
}
UClass* FMyCustomAssetActions::GetSupportedClass() const
{
 return UMyCustomAsset::StaticClass();
}

FColor FMyCustomAssetActions::GetTypeColor() const
{
 return FColor::Emerald;
}
voidFMyCustomAssetActions::MyCustomAssetContext_Clicked()
{
 TSharedRef<SWindow> CookbookWindow = SNew(SWindow)
 .Title(FText::FromString(TEXT("Cookbook Window")))
 .ClientSize(FVector2D(800, 400))
 .SupportsMaximize(false)
 .SupportsMinimize(false);

 IMainFrameModule& MainFrameModule =
 FModuleManager::LoadModuleChecked<IMainFrameModule>
 (TEXT("MainFrame"));

 if (MainFrameModule.GetParentWindow().IsValid())
 {
 FSlateApplication::Get().AddWindowAsNativeChild
 (CookbookWindow, MainFrameModule.GetParentWindow()
 .ToSharedRef());
 }
 else
 {
 FSlateApplication::Get().AddWindow(CookbookWindow);
 }
};

5. Within your editor module, add the following code to the StartupModule()
function:
IAssetTools& AssetTools =
FModuleManager::LoadModuleChecked<FAssetToolsModule>("Asset
Tools").Get();

auto Actions =MakeShareable(new FMyCustomAssetActions);
AssetTools.RegisterAssetTypeActions(Actions);
CreatedAssetTypeActions.Add(Actions);

Integrating C++ and the Unreal Editor

290

6. Add the following inside the module's ShutdownModule() function:
IAssetTools& AssetTools =
FModuleManager::LoadModuleChecked<FAssetToolsModule>("Asset
Tools").Get();

for (auto Action : CreatedAssetTypeActions)
{
 AssetTools.UnregisterAssetTypeActions
 (Action.ToSharedRef());
}

7. Compile your project, and launch the editor.

8. Create an instance of your custom Asset inside Content Browser.

9. Right-click on your new Asset to see our custom command in the context menu.

10. Select the CustomAssetAction command to display a new blank editor window.

Chapter 8

291

How it works…
1. The base class for all asset type-specific context menu commands is

FAssetTypeActions_Base, so we need to inherit from that class.

2. FAssetTypeActions_Base is an abstract class that defines a number of
virtual functions that allow for extending the context menu. The interface which
contains the original information for these virtual functions can be found in
IAssetTypeActions.h.

3. We also declare a function which we bind to our custom context menu entry.
4. IAssetTypeActions::HasActions (const TArray<UObject*>&

InObjects) is the function called by the engine code to see if our
AssetTypeActions class contains any actions that can be applied to the selected
objects.

5. IAssetTypeActions::GetActions(const TArray<UObject*>&
InObjects, class FMenuBuilder& MenuBuilder) is called if the
HasActions function returns true. It calls functions on MenuBuilder to create the
menu options for the actions that we provide.

6. IAssetTypeActions::GetName() returns the name of this class.

7. IAssetTypeActions::GetSupportedClass() returns an instance of
UClass which our actions class supports.

8. IAssetTypeActions::GetTypeColor() returns the color associated
with this class and actions.

9. IAssetTypeActions::GetCategories() returns a category appropriate
for the asset. This is used to change the category under which the actions show in the
context menu.

10. Our overridden implementation of HasActions simply returns true under
all circumstances relying on filtering based on the results of GetSupportedClass.

11. Inside the implementation of GetActions, we can call some functions
on the MenuBuilder object that we are given as a function parameter. The
MenuBuilder is passed as a reference, so any changes that are made by our
function will persist after it returns.

12. AddMenuEntry has a number of parameters. The first parameter is the name of the
action itself. This is the name that will be visible within the context menu. The name
is an FText so that it can be localized should you wish. For the sake of simplicity,
we construct FText from a string literal and don't concern ourselves with multiple
language support.

13. The second parameter is also FText, which we construct by calling
FText::FromString. This parameter is the text displayed on a tooltip if the user
hovers over our command for more than a small amount of time.

Integrating C++ and the Unreal Editor

292

14. The next parameter is FSlateIcon for the command, which is constructed from the
LevelEditor.ViewOptions icon within the editor style set.

15. The last parameter to this function is an FUIAction instance.
The FUIAction is a wrapper around a delegate binding, so we use
FExecuteAction::CreateRaw to bind the command to the MyCustomAsset_
Clicked function on this very instance of FMyCustomAssetActions.

16. This means that when the menu entry is clicked, our MyCustomAssetContext_
Clicked function will be run.

17. Our implementation of GetName returns the name of our Asset type. This string will
be used on the thumbnail for our Asset if we don't set one ourselves, apart from
being used in the title of the menu section that our custom Assets will be placed in.

18. As you'd expect, the implementation of GetSupportedClass returns
UMyCustomAsset::StaticClass(), as this is the Asset type we want our actions
to operate on.

19. GetTypeColor() returns the color that will be used for color coding in Content
Browser—the color is used in the bar at the bottom of the asset thumbnail. I've used
Emerald here, but any arbitrary color will work.

20. The real workhorse of this recipe is the MyCustomAssetContext_
Clicked() function.

21. The first thing that this function does is create a new instance of SWindow.

22. SWindow is the Slate Window—a class from the Slate UI framework.

23. Slate Widgets are created using the SNew function, which returns an
instance of the widget requested.

24. Slate uses the builder design pattern, which means that all the functions that are
chained after SNew returns a reference to the object that was being operated on.

25. In this function, we create our new SWindow, then set the window title, its
client size or area, and whether it can be maximized or minimized.

26. With our new Window ready, we need to get a reference to the root window for the
editor so we can add our window to the hierarchy and get it displayed.

27. We do this using the IMainFrameModule class. It's a module, so we use the
Module Manager to load it.

28. LoadModuleChecked will assert if we can't load the module, so we don't need to
check it.

29. If the module was loaded, we check that we have a valid parent window. If that
window is valid, then we use FSlateApplication::AddWindowAsNativeChild
to add our window as a child of the top-level parent window.

Chapter 8

293

30. If we don't have a top-level parent, the function uses AddWindow to add the new
window without parenting it to another window within the hierarchy.

31. So now we have a class which will display custom actions on our custom Asset type,
but we need to actually tell the engine that it should ask our class to handle custom
actions for the type. In order to do that, we need to register our class with the Asset
Tools module.

32. The best way to do this is to register our class when our editor module is
loaded, and unregister it when it is shut down.

33. As a result, we place our code into the StartupModule and
ShutdownModule functions.

34. Inside StartupModule, we load the Asset Tools module using Module
Manager.

35. With the module loaded, we create a new shared pointer that references an
instance of our custom Asset actions class.

36. All we then need to do is call AssetModule.
RegisterAssetTypeActions, and pass in an instance of our actions class.

37. We then need to store a reference to that Actions instance so that we can
unregister it later.

38. The sample code for this recipe uses an array of all the created asset actions
in case we want to add custom actions for other classes as well.

39. Within ShutdownModule, we again retrieve an instance of the Asset Tools
module.

40. Using a range-based for loop, we iterate over the array of Actions instances
that we populated earlier, and call UnregisterAssetTypeActions, passing
in our Actions class so it can be unregistered.

41. With our class registered, the editor has been instructed to ask our
registered class if it can handle assets which are right-clicked on.

42. If the asset is of the Custom Asset class, then its StaticClass will match
the one returned by GetSupportedClass. The editor will then call GetActions,
and display the menu with the alterations made by our implementation of that
function.

43. When the CustomAssetAction button is clicked, our custom
MyCustomAssetContext_Clicked function will be called via the delegate
that we created.

Integrating C++ and the Unreal Editor

294

Creating new console commands
During development, console commands can be very helpful by allowing a developer or
tester to easily bypass content, or disable the mechanics not relevant to the current test
being run. The most common way to implement this is via console commands, which can
invoke functions during runtime. The console can be accessed using the tilde key (~) or the
equivalent in the upper-left area of the alphanumeric zone of your keyboard.

Getting ready
If you haven't already followed the Creating a new editor module recipe, do so, as this recipe
will need a place to initialize and register the console command.

How to do it...
1. Open your editor module's header file, and add the following code:

IConsoleCommand* DisplayTestCommand;
IConsoleCommand* DisplayUserSpecifiedWindow;

2. Add the following within the implementation of StartupModule:
DisplayTestCommand =
IConsoleManager::Get().RegisterConsoleCommand(TEXT("Display
TestCommandWindow"), TEXT("test"),
FConsoleCommandDelegate::CreateRaw(this,
&FUE4CookbookEditorModule::DisplayWindow,
FString(TEXT("Test Command Window"))), ECVF_Default);
DisplayUserSpecifiedWindow=
IConsoleManager::Get().RegisterConsoleCommand(TEXT("Display
Window"), TEXT("test"),
FConsoleCommandWithArgsDelegate::CreateLambda(
 [&](const TArray< FString >& Args)

Chapter 8

295

 {
 FString WindowTitle;
 for (FString Arg : Args)
 {
 WindowTitle +=Arg;
 WindowTitle.AppendChar(' ');
 }
 this->DisplayWindow(WindowTitle);
 }
), ECVF_Default);

3. Inside ShutdownModule, add this:
If (DisplayTestCommand)
{
 IConsoleManager::Get().UnregisterConsoleObject
 (DisplayTestCommand);
 DisplayTestCommand = nullptr;
}
If (DisplayUserSpecifiedWindow)
{
 IConsoleManager::Get().UnregisterConsoleObject
 (DisplayTestCommand);
 DisplayTestCommand = nullptr;
}

4. Implement the following function in the editor module:
void DisplayWindow(FString WindowTitle)
{
 TSharedRef<SWindow> CookbookWindow = SNew(SWindow)
 .Title(FText::FromString(WindowTitle))
 .ClientSize(FVector2D(800, 400))
 .SupportsMaximize(false)
 .SupportsMinimize(false);
 IMainFrameModule& MainFrameModule =
 FModuleManager::LoadModuleChecked<IMainFrameModule>
 (TEXT("MainFrame"));
 if (MainFrameModule.GetParentWindow().IsValid())
 {
 FSlateApplication::Get().AddWindowAsNativeChild
 (CookbookWindow, MainFrameModule.GetParentWindow()
 .ToSharedRef());
 }
 else
 {
 FSlateApplication::Get().AddWindow(CookbookWindow);
 }
}

Integrating C++ and the Unreal Editor

296

5. Compile your code, and launch the editor.

6. Play the level, then hit the tilde key to bring up the console.

7. Type DisplayTestCommandWindow, and hit Enter.

8. You should see our tutorial window open up:

How it works...
1. Console commands are usually provided by a module. The best way to get the module

to create the command when it is loaded is to place the code in the StartupModule
method.

2. IConsoleManager is the module that contains the console functionality for
the engine.

Chapter 8

297

3. As it is a sub-module of the core module, we don't need to add any additional
information to the build scripts to link in additional modules.

4. In order to call functions within the console manager, we need to get a reference to
the current instance of IConsoleManager that is being used by the engine. To do
so, we invoke the static Get function, which returns a reference to the module in a
similar way to a singleton.

5. RegisterConsoleCommand is the function that we can use to add a new console
command, and make it available in the console:
virtual IConsoleCommand* RegisterConsoleCommand(const
TCHAR* Name, const TCHAR* Help, const
FConsoleCommandDelegate& Command, uint32 Flags);

6. The parameters for the function are the following:

1. Name: The actual console command that will be typed by users. It should not
include spaces.

2. Help: The tooltip that appears when users are looking at the command in
the console. If your console command takes arguments, this is a good place
to display usage information to users.

3. Command: This is the actual function delegate that will be executed when
the user types the command.

4. Flags: These flags control visibility of the command in a shipping build,
and are also used for console variables. ECVF_Default specifies the
default behavior wherein the command is visible, and has no restrictions on
availability in a release build.

7. To create an instance of the appropriate delegate, we use the CreateRaw static
function on the FConsoleCommand delegate type. This lets us bind a raw C++
function to the delegate. The extra argument that is supplied after the function
reference, the FString "Test Command Window", is a compile-time defined
parameter that is passed to the delegate so that the end user doesn't have to specify
the window name.

8. The second console command, DisplayUserSpecifiedWindow, is one
that demonstrates the use of arguments with console commands.

9. The primary difference with this console command, aside from the different
name for users to invoke it, is the use of FConsoleCommandWithArgsDelegate
and the CreateLambda function on it in particular.

10. This function allows us to bind an anonymous function to a delegate. It's particularly
handy when you want to wrap or adapt a function so its signature matches that of a
particular delegate.

Integrating C++ and the Unreal Editor

298

11. In our particular use case, the type of FConsoleCommandWithArgsDelegate
specifies that the function should take a const TArray of FStrings. Our
DisplayWindow function takes a single FString to specify the window title, so
we need to somehow concatenate all the arguments of the console command into a
single FString to use as our window title.

12. The lambda function allows us to do that before passing the FString onto the actual
DisplayWindow function.

13. The first line of the function, [&](const TArray<FString>& Args),
specifies that this lambda or anonymous function wants to capture the context of the
declaring function by reference by including the ampersand in the capture options
[&].

14. The second part is the same as a normal function declaration specifying that
our lambda takes in const Tarray containing FStrings as a parameter called Args.

15. Within the lambda body, we create a new FString, and concatenate the strings that
make up our arguments together, adding a space between them to separate them so
that we don't get a title without spaces.

16. It uses a range-based for loop for brevity to loop over them all and perform the
concatenation.

17. Once they're all concatenated, we use the this pointer (captured by the & operator
mentioned earlier) to invoke DisplayWindow with our new title.

18. In order for our module to remove the console command when it is unloaded,
we need to maintain a reference to the console command object.

19. To achieve this, we create a member variable in the module of type
IConsoleCommand*, called DisplayTestCommand. When we execute the
RegisterConsoleCommand function, it returns a pointer to the console command
object that we can use as a handle later.

20. This allows us to enable or disable console commands at runtime based on
gameplay or other factors.

21. Within ShutdownModule, we check to see if DisplayTestCommand refers
to a valid console command object. If it does, we get a reference to the
IConsoleManager object, and call UnregisterConsoleCommand passing in the
pointer that we stored earlier in our call to RegisterConsoleCommand.

22. The call to UnregisterConsoleCommand deletes the IConsoleCommand instance
via the passed-in pointer, so we don't need to deallocate the memory ourselves,
just reset DisplayTestCommand to nullptr so we can be sure the old pointer
doesn't dangle.

Chapter 8

299

23. The DisplayWindow function takes in the window title as an FString parameter.
This allows us to either use a console command that takes arguments to specify the
title, or a console command that uses payload parameters to hard-code the title for
other commands.

24. The function itself uses a function called SNew() to allocate and create an SWindow
object.

25. SWindow is a Slate Window, a top-level window using the Slate UI framework.

26. Slate uses the Builder design pattern to allow for easy configuration of the
new window.

27. The Title, ClientSize, SupportsMaximize, and SupportsMinimize
functions used here, are all member functions of SWindow, and they return a
reference to an SWindow (usually, the same object that the method was invoked on,
but sometimes, a new object constructed with the new configuration).

28. The fact that all these member methods return a reference to the configured object
allows us to chain these method invocations together to create the desired object in
the right configuration.

29. The functions used in DisplayWindow create a new top-level Window that has
a title based on the function parameter. It is 800x400 pixels wide, and cannot be
maximized or minimized.

30. With our new Window created, we retrieve a reference to the main application frame
module. If the top-level window for the editor exists and is valid, we add our new
window instance as a child of that top-level window.

31. To do this, we retrieve a reference to the Slate interface, and call
AddWindowAsNativeChild to insert our window in the hierarchy.

32. If there isn't a valid top-level window, we don't need to add our new window as a
child of anything, so we can simply call AddWindow, and pass in our new window
instance.

See also
 f Refer to Chapter 5, Handling Events and Delegates, to learn more about delegates.

It explains payload variables in greater detail.

 f For more information on Slate, refer to Chapter 9, User Interface.

Integrating C++ and the Unreal Editor

300

Creating a new graph pin visualizer for
Blueprint

Within the Blueprint system, we can use instances of our MyCustomAsset class as variables,
provided we mark that class as a BlueprintType in its UCLASS macro.

However, by default, our new asset is simply treated as UObject, and we can't access any of
its members:

For some types of assets, we might wish to enable in-line editing of literal values in the same
way that classes such as FVector support the following:

In order to enable this, we need to use a Graph Pin visualizer. This recipe will show you how
to enable in-line editing of an arbitrary type using a custom widget defined by you.

How to do it...
1. Create a new header file called MyCustomAssetPinFactory.h.

2. Inside the header, add the following code:
#pragma once
#include "EdGraphUtilities.h"
#include "MyCustomAsset.h"
#include "SGraphPinCustomAsset.h"

struct UE4COOKBOOKEDITOR_API FMyCustomAssetPinFactory :
public FGraphPanelPinFactory

Chapter 8

301

{
 public:
 virtual TSharedPtr<class SGraphPin> CreatePin(class
 UEdGraphPin* Pin) const override
 {
 if (Pin->PinType.PinSubCategoryObject ==
 UMyCustomAsset::StaticClass())
 {
 return SNew(SGraphPinCustomAsset, Pin);
 }
 else
 {
 return nullptr;
 }
 };
};

3. Create another header file called SGraphPinCustomAsset:
#pragma once
#include "SGraphPin.h"

class UE4COOKBOOKEDITOR_API SGraphPinCustomAsset : public
SGraphPin
{
 SLATE_BEGIN_ARGS(SGraphPinCustomAsset) {}
 SLATE_END_ARGS()
 void Construct(const FArguments& InArgs, UEdGraphPin*
 InPin);
 protected:
 virtual FSlateColor GetPinColor() const override { return
 FSlateColor(FColor::Black); };
 virtual TSharedRef<SWidget> GetDefaultValueWidget()
 override;
 void ColorPicked(FLinearColor SelectedColor);
};

4. Implement SGraphPinCustomAsset in the .cpp file:
#include "UE4CookbookEditor.h"
#include "SColorPicker.h"
#include "SGraphPinCustomAsset.h"

void SGraphPinCustomAsset::Construct(const FArguments& InArgs,
UEdGraphPin* InPin)
{
 SGraphPin::Construct(SGraphPin::FArguments(), InPin);

Integrating C++ and the Unreal Editor

302

}
TSharedRef<SWidget>
SGraphPinCustomAsset::GetDefaultValueWidget()
{
 return SNew(SColorPicker)
 .OnColorCommitted(this,
 &SGraphPinCustomAsset::ColorPicked);
}

void SGraphPinCustomAsset::ColorPicked(FLinearColor
SelectedColor)
{
 UMyCustomAsset* NewValue = NewObject<UMyCustomAsset>();
 NewValue->ColorName =
 SelectedColor.ToFColor(false).ToHex();
 GraphPinObj->GetSchema()
 ->TrySetDefaultObject(*GraphPinObj, NewValue);
}

5. Add #include "Chapter8/MyCustomAssetDetailsCustomization.h" to the
UE4Cookbook editor module implementation file.

6. Add the following member to the editor module class:
TSharedPtr<FMyCustomAssetPinFactory> PinFactory;

7. Add the following to StartupModule():
PinFactory = MakeShareable(new FMyCustomAssetPinFactory());
FEdGraphUtilities::RegisterVisualPinFactory(PinFactory);

8. Also add the following code to ShutdownModule():
FEdGraphUtilities::UnregisterVisualPinFactory(PinFactory);
PinFactory.Reset();

9. Compile your code, and launch the editor.

10. Create a new Function inside the Level Blueprint by clicking on the plus symbol
beside Functions within the My Blueprint panel:

Chapter 8

303

11. Add an input parameter.

12. Set its type to MyCustomAsset (Reference):

13. In the Level Blueprint's Event graph, place an instance of your new function, and
verify that the input pin now has a custom visualizer in the form of a color picker:

Integrating C++ and the Unreal Editor

304

How it works...
1. Customizing how objects appear as literal values on Blueprint pins is done using the

FGraphPanelPinFactory class.

2. This class defines a single virtual function:
virtual TSharedPtr<class SGraphPin> CreatePin(class
UEdGraphPin* Pin) const

3. The function of CreatePin, as the name implies, is to create a new visual
representation of the graph pin.

4. It receives a UEdGraphPin instance. UEdGraphPin contains information
about the object that the pin represents so that our factory class can make an
informed decision regarding which visual representation we should be displaying.

5. Within our implementation of the function, we check that the pin's type is our custom
class.

6. We do this by looking at the PinSubCategoryObject property, which
contains a UClass, and comparing it to the UClass associated with our custom
asset class.

7. If the pin's type meets our conditions, we return a new shared pointer to a Slate
Widget, which is the visual representation of our object.

8. If the pin is of the wrong type, we return a null pointer to indicate a failed
state.

9. The next class, SGraphPinCustomAsset, is the Slate Widget class, which is a visual
representation of our object as a literal.

10. It inherits from SGraphPin, the base class for all graph pins.

11. The SGraphPinCustomAsset class has a Construct function, which is
called when the widget is created.

12. It also implements some functions from the parent class: GetPinColor()
and GetDefaultValueWidget().

13. The last function defined is ColorPicked, a handler for when a user selects
a color in our custom pin.

14. In the implementation of our custom class, we initialize our custom pin by
calling the default implementation of Construct.

15. The role of GetDefaultValueWidget is to actually create the widget that
is the custom representation of our class, and return it to the engine code.

16. In our implementation, it creates a new SColorPicker instance—we want the user
to be able to select a color, and store the hex-based representation of that color
inside the FString property in our custom class.

Chapter 8

305

17. This SColorPicker instance has a property called OnColorCommitted— this is a
slate event that can be assigned to a function on an object instance.

18. Before returning our new SColorPicker, we link OnColorCommitted
to the ColorPicked function on this current object, so it will be called if the user
selects a new color.

19. The ColorPicked function receives the selected color as an input
parameter.

20. Because this widget is used when there's no object connected to the pin we are
associated with, we can't simply set the property on the associated object to the
desired color string.

21. We need to create a new instance of our custom asset class, and we do that
by using the NewObject template function.

22. This function behaves similarly to the SpawnActor function discussed in
other chapters, and initializes a new instance of the specified class before returning a
pointer to it.

23. With a new instance in hand, we can set its ColorName property.
FLinearColors can be converted to FColor objects, which define a ToHex()
function that returns an FString with the hexadecimal representation of the color
that was selected on the new widget.

24. Finally, we need to actually place our new object instance into the graph so
that it will be referenced when the graph is executed.

25. To do this, we need to access the graph pin object that we represent, and
use the GetSchema function. This function returns the Schema for the graph that
owns the node that contains our pin.

26. The Schema contains the actual values that correspond to graph pins, and is
a key element during graph evaluation.

27. Now that we have access to the Schema, we can set the default value for the pin that
our widget represents. This value will be used during graph evaluation if the pin isn't
connected to another pin, and acts like a default value provided during a function
definition in C++.

28. As with all the extensions we've made in this chapter, there has to be some sort of
initialization or registration to tell the engine to defer to our custom implementation
before using its default inbuilt representation.

29. In order to do this, we need to add a new member to our editor module to
store our PinFactory class instance.

30. During StartupModule, we create a new shared pointer that references an instance
of our PinFactory class.

Integrating C++ and the Unreal Editor

306

31. We store it inside the editor module's member so it can be unregistered later. Then
we call FEdGraphUtilities::RegisterVisualPinFactory(PinFactory) to
tell the engine to use our PinFactory to create the visual representation.

32. During ShutdownModule, we unregister the pin factory using
UnregisterVisualPinFactory.

33. Finally, we delete our old PinFactory instance by calling Reset() on the shared
pointer that contains it.

Inspecting types with custom Details panels
By default, UObject-derived UAssets open in the generic property editor. It looks like the
following screenshot:

However, at times you may wish for custom widgets to allow editing of properties on your class.
To facilitate this, Unreal supports Details Customization, which is the focus of this recipe.

How to do it...
1. Create a new header file called MyCustomAssetDetailsCustomization.h.

2. Add the following includes to the header:
#include "MyCustomAsset.h"
#include "DetailLayoutBuilder.h"
#include "IDetailCustomization.h"
#include "IPropertyTypeCustomization.h"

Chapter 8

307

3. Define our customization class as follows:
class FMyCustomAssetDetailsCustomization : public
IDetailCustomization
{
 public:
 virtual void CustomizeDetails(IDetailLayoutBuilder&
 DetailBuilder) override;
 void ColorPicked(FLinearColor SelectedColor);
 static TSharedRef<IDetailCustomization>
 FMyCustomAssetDetailsCustomization::MakeInstance()
 {
 return MakeShareable(new
 FMyCustomAssetDetailsCustomization);
 }
 TWeakObjectPtr<class UMyCustomAsset> MyAsset;
};

4. In the implementation file, create an implementation for
CustomizeDetails:
void
FMyCustomAssetDetailsCustomization::CustomizeDetails(IDetai
lLayoutBuilder& DetailBuilder)
{
 const TArray< TWeakObjectPtr<UObject>>& SelectedObjects =
 DetailBuilder.GetDetailsView().GetSelectedObjects();
 for (int32 ObjectIndex = 0; !MyAsset.IsValid() &&
 ObjectIndex < SelectedObjects.Num(); ++ObjectIndex)
 {
 const TWeakObjectPtr<UObject>& CurrentObject =
 SelectedObjects[ObjectIndex];
 if (CurrentObject.IsValid())
 {
 MyAsset = Cast<UMyCustomAsset>(CurrentObject.Get());
 }
 }
 DetailBuilder.EditCategory("CustomCategory",
 FText::GetEmpty(), ECategoryPriority::Important)
 .AddCustomRow(FText::GetEmpty())
 [
 SNew(SVerticalBox)
 + SVerticalBox::Slot()
 .VAlign(VAlign_Center)
 [
 SNew(SColorPicker)

Integrating C++ and the Unreal Editor

308

 .OnColorCommitted(this,
 &FMyCustomAssetDetailsCustomization::ColorPicked)
]
];
}

5. Also create a definition for ColorPicked:
void
FMyCustomAssetDetailsCustomization::ColorPicked(FLinearColo
r SelectedColor)
{
 if (MyAsset.IsValid())
 {
 MyAsset.Get()->ColorName =
 SelectedColor.ToFColor(false).ToHex();
 }
}

6. Lastly, add the following includes in the .cpp file:
#include "UE4CookbookEditor.h"
#include "IDetailsView.h"
#include "DetailLayoutBuilder.h"
#include "DetailCategoryBuilder.h"
#include "SColorPicker.h"
#include "SBoxPanel.h"
#include "DetailWidgetRow.h"
#include "MyCustomAssetDetailsCustomization.h"

7. In our editor module header, add the following to the implementation of
StartupModule:
FPropertyEditorModule& PropertyModule =
FModuleManager::LoadModuleChecked<FPropertyEditorModule>("P
ropertyEditor");
PropertyModule.RegisterCustomClassLayout(UMyCustomAsset::St
aticClass()->GetFName(),
FOnGetDetailCustomizationInstance::CreateStatic(&FMyCustomA
ssetDetailsCustomization::MakeInstance));

8. Add the following to ShutdownModule:
FPropertyEditorModule& PropertyModule =
FModuleManager::LoadModuleChecked<FPropertyEditorModule>("P
ropertyEditor");
PropertyModule.UnregisterCustomClassLayout(UMyCustomAsset::
StaticClass()->GetFName());

Chapter 8

309

9. Compile your code, and launch the editor. Create a new copy of MyCustomAsset via
the content browser.

10. Double-click on it to verify that the default editor now shows your custom layout:

How it works...
1. Details Customization is performed through the IDetailCustomization interface,

which developers can inherit from when defining a class which customizes the way
assets of a certain class are displayed.

2. The main function that IDetailCustomization uses to allow for this process to
occur is the following:
virtual void CustomizeDetails(IDetailLayoutBuilder&
DetailBuilder) override;

3. Within our implementation of this function, we use methods on
DetailBuilder passed in as a parameter to get an array of all selected objects.
The loop then scans those to ensure that at least one selected object is of the correct
type.

4. Customizing the representation of a class is done by calling methods on the
DetailBuilder object. We create a new category for our details view by using the
EditCategory function.

Integrating C++ and the Unreal Editor

310

5. The first parameter of the EditCategory function is the name of the category we
are going to manipulate.

6. The second parameter is optional, and contains a potentially localized display name
for the category.

7. The third parameter is the priority of the category. Higher priority means it is displayed
further up the list.

8. EditCategory returns a reference to the category itself as CategoryBuilder,
allowing us to chain additional method calls onto an invocation of EditCategory.

9. As a result, we call AddCustomRow() on CategoryBuilder, which adds a
new key-value pair to be displayed in the category.

10. Using the Slate syntax, we then specify that the row will contain a Vertical Box with a
single center-aligned slot.

11. Inside the slot, we create a color picker control, and bind its OnColorCommitted
delegate to our local ColorPicked event handler.

12. Of course, this requires us to define and implement ColourPicked. It has
the following signature:
void
FMyCustomAssetDetailsCustomization::ColorPicked
(FLinearColor SelectedColor)

13. Inside the implementation of ColorPicked, we check to see if one of our selected
assets was of the correct type, because if at least one selected asset was correct,
then MyAsset will be populated with a valid value.

14. Assuming we have a valid asset, we set the ColorName property to the hex
string value corresponding to the color selected by the user.

311

User Interfaces – UI
and UMG

In this chapter, we will cover the following topics:

 f Drawing using Canvas

 f Adding Slate Widgets to the screen

 f Creating screen size-aware scaling for the UI

 f Displaying and hiding a sheet of UMG elements in-game

 f Attaching function calls to Slate events

 f Using Data Binding with Unreal Motion Graphics

 f Controlling widget appearance with Styles

 f Creating a custom SWidget/UWidget

Introduction
Displaying feedback to the player is one of the most important elements within game
design, and this will usually involve some sort of HUD, or at least menus, within your game.

In previous versions of Unreal, there was simple HUD support, which allowed you to
draw simple shapes and text to the screen. However, it was somewhat limited in terms
of aesthetics, and so, solutions such as Scaleform became common to work around the
limitations. Scaleform leveraged Adobe's Flash file format to store vector images and UI
scripts. It was not without its own cons for developers, though, not least the cost—it was a
third-party product requiring an (at times expensive) license.

9

User Interfaces – UI and UMG

312

As a result, Epic developed Slate for the Unreal 4 editor and the in-game UI framework. Slate
is a collection of widgets (UI elements) and a framework allowing a cross-platform interface for
the Editor. It is also usable in-game to draw widgets, such as sliders and buttons, for menus
and HUDs.

Slate uses declarative syntax to allow an xml-style representation of user interface elements
in their hierarchy in native C++. It accomplishes this by making heavy use of macros and
operator overloading.

That said, not everybody wants to ask their programmers to design the game's HUD. One of the
significant advantages of using Scaleform within Unreal 3 was the ability to develop the visual
appearance of game UIs using the Flash visual editor, so visual designers didn't need to learn a
programming language. Programmers could then insert the logic and data separately. This is the
same paradigm espoused by the Windows Presentation Framework (WPF), for example.

In a similar fashion, Unreal provides Unreal Motion Graphics (UMG). UMG is a visual editor for
Slate widgets that allows you to visually style, layout, and animate user interfaces. UI widgets
(or controls if you've come from a Win32 background) can have their properties controlled by
either Blueprint code (written in the Graph view of the UMG window) or from C++. This chapter
primarily deals with displaying UI elements, creating widget hierarchies, and creating base
SWidget classes that can be styled and used within UMG.

Drawing using Canvas
Canvas is a continuation of the simple HUD implemented within Unreal 3. While it isn't so
commonly used within shipping games, mostly being replaced by Slate/UMG, it's simple to
use, especially when you want to draw text or shapes to the screen. Canvas drawing is still
used extensively by console commands used for debugging and performance analysis such
as the stat game and other stat commands. Refer to Chapter 8, Integrating C++ and the
Unreal Editor, for the recipe for creating your own console commands.

How to do it...
1. Open your <Module>.build.cs file, and uncomment/add the following line:

PrivateDependencyModuleNames.AddRange(new string[] {
"Slate", "SlateCore" });

2. Create a new GameMode called CustomHUDGameMode using the editor class wizard.
Refer to Chapter 4, Actors and Components, if you need a refresher on doing this.

3. Add a constructor to the class:
ACustomHUDGameMode();

Chapter 9

313

4. Add the following to the constructor implementation:
ACustomHUDGameMode::ACustomHUDGameMode()
:AGameMode()
{
 HUDClass = ACustomHUD::StaticClass();
}

5. Create a new HUD subclass called CustomHUD, again using the wizard.

6. Add the override keyword to the following function:
public:
virtual void DrawHUD() override;

7. Now implement the function:
voidACustomHUD::DrawHUD()
{
 Super::DrawHUD();
 Canvas->DrawText(GEngine->GetSmallFont(), TEXT("Test
 string to be printed to screen"), 10, 10);
 FCanvasBoxItemProgressBar(FVector2D(5, 25),
 FVector2D(100, 5));
 Canvas->DrawItem(ProgressBar);
 DrawRect(FLinearColor::Blue, 5, 25, 100, 5);
}

8. Compile your code, and launch the editor.

9. Within the editor, open the World Settings panel from the Settings drop-down menu:

User Interfaces – UI and UMG

314

10. In the World Settings dialog, select CustomHUDGameMode from the list under
GameMode Override:

11. Play and verify that your custom HUD is drawing to the screen:

How it works...
1. All the UI recipes here will be using Slate for drawing, so we need to add a dependency

between our module and the Slate framework so that we can access the classes
declared in that module.

2. The best place to put custom Canvas draw calls for a game HUD is inside a subclass
of AHUD.

3. In order to tell the engine to use our custom subclass, though, we need to create a
new GameMode, and specify the type of our custom class.

4. Within the constructor of our custom Game Mode, we assign the UClass for our
new HUD type to the HUDClass variable. This UClass is passed onto each player
controller as they spawn in, and the controller is then responsible for the AHUD
instance that it creates.

Chapter 9

315

5. With our custom GameMode loading our custom HUD, we need to actually create the
said custom HUD class.

6. AHUD defines a virtual function called DrawHUD(), which is invoked in every frame to
allow us to draw elements to the screen.

7. As a result, we override that function, and perform our drawing inside the
implementation.

8. The first method used is as follows:
floatDrawText(constUFont* InFont, constFString&InText,
float X, float Y, float XScale = 1.f, float YScale = 1.f,
constFFontRenderInfo&RenderInfo = FFontRenderInfo());

9. DrawText requires a font to draw with. The default font used by stat and other HUD
drawing commands in the engine code is actually stored in the GEngine class, and
can be accessed by using the GetSmallFont function, which returns an instance of
the UFont as a pointer.

10. The remaining arguments that we are use are the actual text that should be
rendered, as well as the offset, in pixels, at which the text should be drawn.

11. DrawText is a function that allows you to directly pass in the data that is to be
displayed.

12. The general DrawItem function is a Visitor implementation that allows you to create
an object that encapsulates the information about the object to be drawn and reuse
that object on multiple draw calls.

13. In this recipe, we create an element that can be used to represent a progress bar. We
encapsulate the required information regarding the width and height of our box into
an FCanvasBoxItem, which we then pass to the DrawItem function on our Canvas.

14. The third item that we draw is a filled rectangle. This function uses convenience
methods defined in the HUD class rather than on the Canvas itself. The filled
rectangle is placed at the same location as our FCanvasBox so that it can represent
the current value inside the progress bar.

Adding Slate Widgets to the screen
The previous recipe used the FCanvas API to draw to the screen. However, FCanvas
suffers from a number of limitations, for example, animations are difficult to implement, and
drawing graphics on the screen involves creating textures or materials. FCanvas also doesn't
implement anything in the way of widgets or window controls, making data entry or other
forms of user input more complex than it needs to be. This recipe will show you how to begin
creating HUD elements onscreen using Slate, which provides a number of built-in controls.

User Interfaces – UI and UMG

316

Getting ready
Add Slate and SlateCore to your module's dependencies if you haven't done so already
(see recipe Drawing using Canvas for how to do this).

How to do it...
1. Create a new PlayerController subclass, ACustomHUDPlayerController.

2. Override the BeginPlay virtual method within your new subclass:
public:
virtual void BeginPlay() override;

3. Add the following code for your overridden BeginPlay() inside the subclass'
implementation:
void ACustomHUDPlayerController::BeginPlay()
{
 Super::BeginPlay();
 TSharedRef<SVerticalBox> widget = SNew(SVerticalBox)
 + SVerticalBox::Slot()
 .HAlign(HAlign_Center)
 .VAlign(VAlign_Center)
 [
 SNew(SButton)
 .Content()
 [
 SNew(STextBlock)
 .Text(FText::FromString(TEXT("Test button")))
]
];
 GEngine->GameViewport
 ->AddViewportWidgetForPlayer(GetLocalPlayer(),
 widget, 1);
}

4. If you try to compile now, you'll get some errors regarding classes not being defined.
This is because we need to include their headers:
#include "SlateBasics.h"
#include "SButton.h"
#include "STextBlock.h"

5. Create a new GameMode called SlateHUDGameMode:

6. Add a constructor inside the Game Mode:
ASlateHUDGameMode();

Chapter 9

317

7. Implement the constructor with the following code:
ASlateHUDGameMode::ASlateHUDGameMode()
:Super()
{
 PlayerControllerClass =
 ACustomHUDPlayerController::StaticClass();
}

8. Add the following includes to the implementation file:
#include "CustomHudPlayerController.h"

9. After adding the include to the implementation file, compile your game.

10. Within the Editor, open World Settings from the toolbar:

11. Inside World Settings, override the level's Game Mode to be our
SlateHUDGameMode.

User Interfaces – UI and UMG

318

12. Play the level, and see your new UI displayed on the screen:

How it works...
1. In order for us to reference Slate classes or functions in our code, our module must

link with the Slate and SlateCore modules, so we add those to the module
dependencies.

2. We need to instantiate our UI in one of the classes that loads when the game runs, so
for this recipe, we use our custom PlayerController, in the BeginPlay function,
as the place to create our UI.

3. Inside the BeginPlay implementation, we create a new SVerticalBox using
the SNew function. We add a slot for a widget to our box, and set that slot to both
horizontal and vertical centering.

4. Inside the slot, which we access using square brackets, we create a button that has
Textblock inside it.

5. In Textblock, we set the Text property to a string literal value.

6. With the UI now created, we call AddViewportWidgetForPlayer to display this
widget on the local player's screen.

7. With our custom PlayerController ready, we now need to create a custom
GameMode to specify that it should use our new PlayerController.

8. With the custom PlayerController being loaded at the start of the game, when
BeginPlay is called, our UI will be shown.

9. The UI is very small at this screen size. Refer to the next recipe for information on how
to scale it appropriately for the resolution of the game window.

Chapter 9

319

Creating screen size-aware scaling for the UI
If you have followed the previous recipe, you will notice that when you use Play In Editor, the
button that loads is unusually small.

The reason for this is UI Scaling, a system that allows you to scale the user interface based
on the screen size. User interface elements are represented in terms of pixels, usually in
absolute terms (the button should be 10 pixels tall).

The problem with this is that if you use a higher-resolution panel, 10 pixels might be much
smaller, because each pixel is smaller in size.

Getting ready
The UI scaling system in Unreal allows you to control a global scale modifier, which will scale
all the controls on the screen based on the screen resolution. Given the earlier example,
you might wish to adjust the size of the button so that its apparent size is unchanged when
viewing your UI on a smaller screen. This recipe shows two different methods for altering the
scaling rates.

How to do it...
1. Create a custom PlayerController subclass. Call it

ScalingUIPlayerController.

2. Inside the class, override BeginPlay:
virtual void BeginPlay() override;

3. Add the following code in the implementation of that function:
Super::BeginPlay();
TSharedRef<SVerticalBox> widget = SNew(SVerticalBox)
+ SVerticalBox::Slot()
.HAlign(HAlign_Center)
.VAlign(VAlign_Center)
[
 SNew(SButton)
 .Content()
 [
 SNew(STextBlock)
 .Text(FText::FromString(TEXT("Test button")))
]
];
GEngine->GameViewport
->AddViewportWidgetForPlayer(GetLocalPlayer(), widget, 1);

User Interfaces – UI and UMG

320

4. Create a new GameMode subclass called ScalingUIGameMode, and give it a default
constructor:
ScalingUIGameMode();

5. Within the default constructor, set the default player controller class to
ScalingUIPlayerController:
AScalingUIGameMode::AScalingUIGameMode()
:AGameMode()
{
 PlayerControllerClass =
 ACustomHUDPlayerController::StaticClass();
}

6. This should give you a user interface like the one from the previous recipe. Note that
the UI is very tiny if you use Play In Editor:

7. To alter the rate at which the UI scales down or up, we need to change the scaling
curve. We can do that through two different methods.

Chapter 9

321

The In-Editor method
1. Launch Unreal, then open the Project Settings dialog through the Edit menu:

2. Under the User Interface section, there is a curve that can be used to alter the UI
scaling factor based on the short dimension of your screen:

User Interfaces – UI and UMG

322

3. Click on the second dot, or keypoint, on the graph.

4. Change its output value to 1.

The Config file method
1. Browse to your project directory, and look inside the Config folder:

2. Open DefaultEngine.ini inside your text editor of choice.

3. Find the [/Script/Engine.UserInterfaceSettings] section:
[/Script/Engine.UserInterfaceSettings]
RenderFocusRule=NavigationOnly
DefaultCursor=None
TextEditBeamCursor=None
CrosshairsCursor=None
GrabHandCursor=None
GrabHandClosedCursor=None
SlashedCircleCursor=None
ApplicationScale=1.000000
UIScaleRule=ShortestSide
CustomScalingRuleClass=None
UIScaleCurve=(EditorCurveData=(PreInfinityExtrap=RCCE_Const
ant,PostInfinityExtrap=RCCE_Constant,Keys=((Time=480.000000,Value=
0.444000),(Time=720.000000,Value=1.000000),(Time=108
0.000000,Value=1.000000),(Time=8640.000000,Value=8.000000))
,DefaultValue=340282346638528859811704183484516925440.00000
0),ExternalCurve=None)

Chapter 9

323

4. Look for a key called UIScaleCurve in that section.

5. In the value for that key, you'll notice a number of (Time=x,Value=y) pairs. Edit
the second pair so that its Time value is 720.000000 and the Value is 1.000000.

6. Restart the editor if you have it open.

7. Start the Play In Editor preview to confirm that your UI now remains readable at the
PIE screen's resolution (assuming you are using a 1080p monitor so that the PIE
window is running at 720p or thereabouts):

8. You can also see how the scaling works if you use a New Editor Window to preview
your game.

9. To do so, click on the arrow to the right of Play on the toolbar.

10. Select New Editor Window.

11. Inside this window, you can use the console command r.setreswidthxheight to
change the resolution, and observe the changes that result from doing so.

How it works...
1. As usual, when we want to use a custom PlayerController, we need a custom

GameMode to specify which PlayerController to use.

2. We create both, a custom PlayerController and GameMode, and place some
Slate code in the BeginPlay method of PlayerController so that some UI
elements are drawn.

User Interfaces – UI and UMG

324

3. Because the main game viewport is usually quite small within the Unreal editor, the
UI initially shows in a scaled-down fashion.

4. This is intended to allow for the game UI to take up less room on smaller resolution
displays, but can have the side effect of making the text very difficult to read if the
window isn't being stretched to fit the full screen.

5. Unreal stores the configuration data that should persist between sessions, but not
necessarily be hard-coded into the executable inside config files.

6. Config files use an extended version of the .ini file format that has been commonly
used with Windows software.

7. Config files store data using the following syntax:
[Section Name]
Key=Value

8. Unreal has a UserInterfaceSettings class, with a property called
UIScaleCurve on it.

9. That UPROPERTY is marked as config, so Unreal serializes the value to the .ini file.

10. As a result, it stores the UIScale data in the DefaultEngine.ini file, in the
Engine.UserInterfaceSettings section.

11. The data is stored using a text format, which contains a list of key points. Editing the
Time, Value pairs alters or adds new key points to the curve.

12. The Project Settings dialog is a simple frontend for directly editing the .ini files
yourself, and for designers, it is an intuitive way to edit the curve. However, having the
data stored textually allows for programmers to potentially develop build tools that
modify properties such as UIScale without having to recompile their game.

13. Time refers to the input value. In this case, the input value is the narrower dimension
of the screen (usually, the height).

14. Value is the universal scaling factor applied to the UI when the screen's narrow
dimension is approximately the height of the value in the Time field.

15. So, to set the UI to remain normal-sized at a 1280x720 resolution, set the time/input
factor to 720, and the scale factor to 1.

See also
 f You can refer to the UE4 documentation for more information regarding config files

Chapter 9

325

Displaying and hiding a sheet of UMG
elements in-game

So we have already discussed how to add a widget to the viewport, which means that it will be
rendered on the player's screen.

However, what if we want to have UI elements that are toggled based on other factors, such as
proximity to certain Actors, or a player holding a key down, or if we want a UI that disappears
after a specified time?

How to do it...
1. Create a new GameMode class called ToggleHUDGameMode.

2. Override BeginPlay and EndPlay.

3. Add the following UPROPERTY:
UPROPERTY()

FTimerHandle HUDToggleTimer;

4. Lastly add this member variable:
TSharedPtr<SVerticalBox> widget;

5. Implement BeginPlay with the following code in the method body:
void AToggleHUDGameMode::BeginPlay()
{
 Super::BeginPlay();
 widget = SNew(SVerticalBox)
 + SVerticalBox::Slot()
 .HAlign(HAlign_Center)
 .VAlign(VAlign_Center)
 [
 SNew(SButton)
 .Content()
 [
 SNew(STextBlock)
 .Text(FText::FromString(TEXT("Test button")))
]
];
 GEngine->GameViewport
 ->AddViewportWidgetForPlayer(GetWorld()
 ->GetFirstLocalPlayerFromController(),
 widget.ToSharedRef(), 1);

 GetWorld()->GetTimerManager().SetTimer(HUDToggleTimer,
 FTimerDelegate::CreateLambda
 ([this]

User Interfaces – UI and UMG

326

 {
 if (this->widget->GetVisibility().IsVisible())
 {
 this->widget->SetVisibility(EVisibility::Hidden);
 }
 else
 {
 this->widget->SetVisibility(EVisibility::Visible);
 }
 }), 5, true);
}

6. Implement EndPlay:
void AToggleHUDGameMode::EndPlay(constEEndPlayReason::Type
EndPlayReason)
{
 Super::EndPlay(EndPlayReason);
 GetWorld->GetTimerManager().ClearTimer(HUDToggleTimer);
}

7. Compile your code, and start the editor.

8. Within the Editor, open World Settings from the toolbar:

9. Inside World Settings, override the level's Game Mode to be our
AToggleHUDGameMode:

10. Play the level, and verify that the UI toggles its visibility every 5 seconds.

Chapter 9

327

How it works...
As with most of the other recipes in this chapter, we are using a custom GameMode class to
display our single-player UI on the player's viewport for convenience:

1. We override BeginPlay and EndPlay so that we can correctly handle the timer that
will be toggling our UI on and off for us.

2. To make that possible, we need to store a reference to the timer as a UPROPERTY to
ensure it won't be garbage collected.

3. Within BeginPlay, we create a new VerticalBox using the SNew macro, and
place a button in its first slot.

4. Buttons have Content, which can be some other widget to host inside them, such as
SImage or STextBlock.

5. In this instance, we place a STextBlock into the Content slot. The contents of the
text block are irrelevant as long as they are long enough for us to be able to see our
button properly.

6. Having initialized our widget hierarchy, we add the root widget to the player's viewport
so that it can be seen by them.

7. Now we set up a timer to toggle the visibility of our widget. We are using a timer to
simplify this recipe rather than having to implement user input and input bindings,
but the principle is the same.

8. To do this, we get a reference to the game world, and its associated timer manager.

9. With the Timer manager in hand, we can create a new timer.

10. However, we need to actually specify the code to run when the timer expires. One
simple way to do this is to use a lambda function for our toggle the hud function.

11. Lambdas are anonymous functions. Think of them as literal functions.

12. To link a lambda function to the timer, we need to create a timer delegate.

13. The FTimerDelegate::CreateLambda function is designed to convert a lambda
function into a delegate, which the timer can call at the specified interval.

14. The lambda needs to access the this pointer from its containing object, our
GameMode, so that it can change properties on the widget instance that we have
created.

15. To give it the access it needs, we begin our lambda declaration with the []
operators, which enclose variables that should be captured into the lambda,
and accessible inside it.

16. The curly braces then enclose the function body in the same way they would with a
normal function declaration.

User Interfaces – UI and UMG

328

17. Inside the function, we check if our widget is visible. If it is visible, then we hide it
using SWidget::SetVisibility.

18. If the widget isn't visible, then we turn it on using the same function call.

19. In the rest of the call to SetTimer, we specify the interval (in seconds) to call the
timer, and set the timer to loop.

20. One thing we need to be careful of, though, is the possibility of our object being
destroyed between two timer invocations, potentially leading to a crash if a reference
to our object is left dangling.

21. In order to fix this, we need to remove the timer.

22. Given that we set the timer during BeginPlay, it makes sense to clear the timer
during EndPlay.

23. EndPlay will be called whenever GameMode either ends play or is destroyed, so we
can safely cancel the timer during its implementation.

24. With GameMode set as the default game mode, the UI is created when the game
begins to play, and the timer delegate executes every 5 seconds to switch the visibility
of the widgets between true and false.

25. When you close the game, EndPlay clears the timer reference, avoiding any
problems.

Attaching function calls to Slate events
While creating buttons is all well and fine, at the moment, any UI element you add to the
player's screen just sits there without anything happening even if a user clicks on it. We don't
have any event handlers attached to the Slate elements at the moment, so events such as
mouse clicks don't actually cause anything to happen.

Getting ready
This recipe shows you how to attach functions to these events so that we can run custom
code when they occur.

How to do it...
1. Create a new GameMode subclass called AClickEventGameMode.

2. Add the following private members to the class:
private:
TSharedPtr<SVerticalBox> Widget;
TSharedPtr<STextBlock> ButtonLabel;

Chapter 9

329

3. Add the following public functions, noting the override for BeginPlay():
public:
virtual void BeginPlay() override;
FReplyButtonClicked();

4. Within the .cpp file, add the implementation for BeginPlay:
void AClickEventGameMode::BeginPlay()
{
 Super::BeginPlay();
 Widget = SNew(SVerticalBox)
 + SVerticalBox::Slot()
 .HAlign(HAlign_Center)
 .VAlign(VAlign_Center)
 [
 SNew(SButton)
 .OnClicked(FOnClicked::CreateUObject(this,
 &AClickEventGameMode::ButtonClicked))
 .Content()
 [
 SAssignNew(ButtonLabel, STextBlock)
 .Text(FText::FromString(TEXT("Click me!")))
]
];
 GEngine->GameViewport
 ->AddViewportWidgetForPlayer(GetWorld()
 ->GetFirstLocalPlayerFromController(),
 Widget.ToSharedRef(), 1);
 GetWorld()->GetFirstPlayerController()->bShowMouseCursor
 = true;
 GEngine->GetFirstLocalPlayerController(GetWorld())->
 SetInputMode(FInputModeUIOnly()
 .SetLockMouseToViewport(false)
 .SetWidgetToFocus(Widget));
}

5. Also add an implementation for ButtonClicked():
FReplyAClickEventGameMode::ButtonClicked()
{
 ButtonLabel->SetText(FString(TEXT("Clicked!")));
 returnFReply::Handled();
}

6. Compile your code, and launch the editor.

User Interfaces – UI and UMG

330

7. Override the game mode in World Settings to be AClickEventGameMode:

8. Preview in the editor, and verify that the UI shows a button that changes from Click
Me! to Clicked! when you use the mouse cursor to click on it.

How it works...
1. As with most of the recipes in this chapter, we use GameMode to create and display

our UI to minimize the number of classes extraneous to the point of the recipe that
you need to create.

2. Within our new game mode, we need to retain references to the Slate Widgets that
we create so that we can interact with them after their creation.

3. As a result, we create two shared pointers as member data within our GameMode—
one to the overall parent or root widget of our UI, and the other to the label on our
button, because we're going to be changing the label text at runtime later.

4. We override BeginPlay, as it is a convenient place to create our UI after the game
has started, and we will be able to get valid references to our player controller.

5. We also create a function called ButtonClicked. It returns FReply, a struct
indicating if an event was handled. The function signature for ButtonClicked is
determined by the signature of FOnClicked, a delegate which we will be using in a
moment.

6. Inside our implementation of BeginPlay, the first thing we do is call the
implementation we are overriding to ensure that the class is initialized appropriately.

7. Then, as usual, we use our SNew function to create VerticalBox, and we add a slot
to it which is centered.

8. We create a new Button inside that slot, and we add a value to the OnClicked
attribute that the button contains.

9. OnClicked is a delegate property. This means that the Button will broadcast the
OnClicked delegate any time a certain event happens (as the name implies in this
instance, when the button is clicked).

10. To subscribe or listen to the delegate, and be notified of the event that it refers to,
we need to assign a delegate instance to the property.

11. We do that using the standard delegate functions such as CreateUObject,
CreateStatic, or CreateLambda. Any of those will work—we can bind UObject
member functions, static functions, lambdas, and other functions.

Check Chapter 5, Handling Events and Delegates, to learn more on
delegates to see about the other types of function that we can bind
to delegates.

Chapter 9

331

12. CreateUObject expects a pointer to a class instance, and a pointer to the member
function defined in that class to call.

13. The function has to have a signature that is convertible to the signature of the
delegate:
/** The delegate to execute when the button is clicked */
FOnClickedOnClicked;

14. As can be seen here, OnClicked delegate type is FOnClicked—this is why the
ButtonClicked function that we declared has the same signature as FOnClicked.

15. By passing in a pointer to this, and the pointer to the function to invoke, the engine
will call that function on this specific object instance when the button is clicked.

16. After setting up the delegate, we use the Content() function, which returns a
reference to the single slot that the button has for any content that it should contain.

17. We then use SAssignNew to create our button's label, using the TextBlock widget.

18. SAssignNew is important, because it allows us to use Slate's declarative syntax, and
yet assigns variables to point to specific child widgets in the hierarchy.

19. SAssignNew first argument is the variable that we want to store the widget in, and
the second argument is the type of that widget.

20. With ButtonLabel now pointing at our button's TextBlock, we can set its Text
attribute to a static string.

21. Finally, we add the widget to the player's viewport using
AddViewportWidgetForPlayer, which expects, as parameters, LocalPlayer to
add the widget to, the widget itself, and a depth value (higher values to the front).

22. To get the LocalPlayer instance, we assume we are running without split screen,
and so, the first player controller will be the only one, that is, the player's controller.
The GetFirstLocalPlayerFromController function is a convenience function
that simply fetches the first player controller, and returns its local player object.

23. We also need to focus the widget so the player can click on it, and display a cursor so
that the player knows where their mouse is on the screen.

24. We know from the previous step that we can assume the first local player controller is
the one we're interested in, so we can access it and change its ShowMouseCursor
variable to true. This will cause the cursor to be rendered on screen.

25. SetInputMode allows us to focus on a widget so that the player can interact with
it amongst other UI-related functionality, such as locking the mouse to the game's
viewport.

26. It uses an FInputMode object as its only parameter, which we can construct with the
specific elements that we wish to include by using the builder pattern.

27. The FInputModeUIOnly class is a FInputMode subclass that specifies that we
want all input events to be redirected to the UI layer rather than the player controller
and other input handling.

User Interfaces – UI and UMG

332

28. The builder pattern allows us to chain the method calls to customize our object
instance before it is sent into the function as the parameter.

29. We chain SetLockMouseToViewport(false) to specify that the player's mouse
can leave the boundary of the game screen with SetWidgetToFocus(Widget),
which specifies our top-level widget as the one that the game should direct player
input to.

30. Finally, we have our actual implementation for ButtonClicked, our event handler.

31. When the function is run due to our button being clicked, we change our button's
label to indicate it has been clicked.

32. We then need to return an instance of FReply to the caller to let the UI framework
know that the event has been handled, and to not continue propagating the event
back up the widget hierarchy.

33. FReply::Handled() returns FReply set up to indicate this to the framework.

34. We could have used FReply::Unhandled(), but this would have told the
framework that the click event wasn't actually the one we were interested in, and it
should look for other objects that might be interested in the event instead.

Use Data Binding with Unreal Motion
Graphics

So far, we've been assigning static values to the attributes of our UI widgets. However, what if
we want to be more dynamic with widget content, or parameters such as border color? We can
use a principle called data binding to dynamically link properties of our UI with variables in the
broader program.

Unreal uses the Attribute system to allow us to bind the value of an attribute to the
return value from a function, for example. This means that changing those variables will
automatically cause the UI to change in response, according to our wishes.

How to do it...
1. Create a new GameMode subclass called AAtributeGameMode.

2. Add the following private member to the class:
private:
TSharedPtr<SVerticalBox> Widget;

3. Add the following public functions, noting the override for BeginPlay():
public:
virtual void BeginPlay() override;
FTextGetButtonLabel() const ;

Chapter 9

333

4. Add the implementation for BeginPlay within the .cpp file:
voidAClickEventGameMode::BeginPlay()
{
 Super::BeginPlay();
 Widget = SNew(SVerticalBox)
 + SVerticalBox::Slot()
 .HAlign(HAlign_Center)
 .VAlign(VAlign_Center)
 [
 SNew(SButton)
 .Content()
 [
 SNew(STextBlock)
 .Text(TAttribute<FText>::Create(TAttribute<FText>
 ::FGetter::CreateUObject(this,
 &AAttributeGameMode::GetButtonLabel)))
]
];
 GEngine->GameViewport
 ->AddViewportWidgetForPlayer(GetWorld()
 ->GetFirstLocalPlayerFromController(),
 Widget.ToSharedRef(), 1);
}

5. Also, add an implementation for GetButtonLabel():
FTextAAttributeGameMode::GetButtonLabel() const
{
 FVectorActorLocation = GetWorld()
 ->GetFirstPlayerController()->GetPawn()
 ->GetActorLocation();
 returnFText::FromString(FString::Printf(TEXT("%f, %f,
 %f"),
 ActorLocation.X, ActorLocation.Y, ActorLocation.Z));
}

6. Compile your code, and launch the editor.

7. Override the game mode in World Settings to be AAtributeGameMode.

8. Note that in a Play In Editor session, the value on the UI's button changes as the
player moves around the scene.

User Interfaces – UI and UMG

334

How it works...
1. Just like almost all other recipes in this chapter, the first thing we need to do is create

a game mode as a convenient host for our UI. We create the UI in the same fashion
as in the other recipes, by placing Slate code inside the BeginPlay() method of
our game mode.

2. The interesting feature of this recipe concerns how we set the value of our button's
label text:
.Text(
TAttribute<FText>::Create(TAttribute<FText>::FGetter::Creat
eUObject(this, &AAttributeGameMode::GetButtonLabel)))

3. The preceding syntax is unusually verbose, but what it is actually doing is
comparatively simple. We assign something to the Text property, which is of the type
FText. We can assign TAttribute<FText> to this property, and the TAttribute
Get() method will be called whenever the UI wants to ensure that the value of Text
is up to date.

4. To create TAttribute, we need to call the static TAttribute<VariableType>::
Create() method.

5. This function expects a delegate of some description. Depending on the type of
delegate passed to TAttribute::Create, TAttribute::Get() invokes a
different type of function to retrieve the actual value.

6. In the code for this recipe, we invoke a member function of UObject. This means we
know we will be calling the CreateUObject function on some delegate type.

We can use CreateLambda, CreateStatic, or CreateRaw to invoke
a lambda, a static, or a member function respectively on a raw C++
class. This will give us the current value for the attribute.

7. But what delegate type do we want to create an instance of? Because we're
templating the TAttribute class on the actual variable type that the attribute will
be associated with, we need a delegate that is also templated on the variable type as
its return value.

8. That is to say, if we have TAttribute<FText>, the delegate connected to it needs
to return an FText.

Chapter 9

335

9. We have the following code within TAttribute:
template<typenameObjectType>
classTAttribute
{
 public:
 /**
 * Attribute 'getter' delegate
 *
 * ObjectTypeGetValue() const
 *
 * @return The attribute's value
 */
 DECLARE_DELEGATE_RetVal(ObjectType, FGetter);
 (…)
}

10. The FGetter delegate type is declared inside the TAttribute class, so its
return value can be templated on the ObjectType parameter of the TAttribute
template.

11. This means that TAttribute<Typename>::FGetter automatically
defines a delegate with the correct return type of Typename.

12. So we need to create a UObject-bound delegate of type and signature for
TAttribute<FText>::FGetter.

13. Once we have that delegate, we can call TAttribute::Create on the delegate to
link the delegate's return value to our TextBlock member variable Text.

14. With our UI defined and a binding between the Text property, a
TAttribute<FText>, and a delegate returning FText, we can now add the UI to
the player's screen so that it's visible.

15. Every frame, the game engine checks all properties to see if they are linked
to TAttributes.

16. If there's a connection, then the TAttribute Get() function is called, invoking the
delegate, and returning the delegate's return value so that Slate can store it inside
the widget's corresponding member variable.

17. For our demonstration of the process, GetButtonLabel retrieves the
location of the first player pawn in the game world.

18. We then use FString::Printf to format the location data into a human readable
string, and wrap that in an FText so that it can be stored as the TextBlock text
value.

User Interfaces – UI and UMG

336

Controlling widget appearance with Styles
So far in this chapter, we've been creating UI elements that use the default visual
representation. This recipe shows you how to create a Style in C++ that can be used as a
common look-and-feel across your whole project.

How to do it...
1. Create a new class header in your project. Name the file "CookbookStyle.h".

2. Add the following code to the file:
#pragma once
#include "SlateBasics.h"
#include "SlateExtras.h"
classFCookbookStyle
{
 public:
 static void Initialize();
 static void Shutdown();
 static void ReloadTextures();
 staticconstISlateStyle& Get();
 staticFNameGetStyleSetName();
 private:
 staticTSharedRef<class FSlateStyleSet> Create();
 private:
 staticTSharedPtr<class
 FSlateStyleSet>CookbookStyleInstance;
};

3. Create a corresponding implementation cpp file for this class, and add the
following code to it:
#include "UE4Cookbook.h"
#include "CookbookStyle.h"
#include "SlateGameResources.h"
TSharedPtr<FSlateStyleSet>FCookbookStyle::CookbookStyleInst
ance = NULL;
voidFCookbookStyle::Initialize()
{
 if (!CookbookStyleInstance.IsValid())
 {
 CookbookStyleInstance = Create();
 FSlateStyleRegistry::RegisterSlateStyle
 (*CookbookStyleInstance);
 }

Chapter 9

337

}

voidFCookbookStyle::Shutdown()
{
 FSlateStyleRegistry::UnRegisterSlateStyle
 (*CookbookStyleInstance);
 ensure(CookbookStyleInstance.IsUnique());
 CookbookStyleInstance.Reset();
}
FNameFCookbookStyle::GetStyleSetName()
{
 staticFNameStyleSetName(TEXT("CookbookStyle"));
 returnStyleSetName;
}
#define IMAGE_BRUSH(RelativePath, ...) FSlateImageBrush(
FPaths::GameContentDir() / "Slate"/ RelativePath +
TEXT(".png"), __VA_ARGS__)
#define BOX_BRUSH(RelativePath, ...) FSlateBoxBrush(
FPaths::GameContentDir() / "Slate"/ RelativePath +
TEXT(".png"), __VA_ARGS__)
#define BORDER_BRUSH(RelativePath, ...) FSlateBorderBrush(
FPaths::GameContentDir() / "Slate"/ RelativePath +
TEXT(".png"), __VA_ARGS__)
#define TTF_FONT(RelativePath, ...) FSlateFontInfo(
FPaths::GameContentDir() / "Slate"/ RelativePath +
TEXT(".ttf"), __VA_ARGS__)
#define OTF_FONT(RelativePath, ...) FSlateFontInfo(
FPaths::GameContentDir() / "Slate"/ RelativePath +
TEXT(".otf"), __VA_ARGS__)

TSharedRef<FSlateStyleSet>FCookbookStyle::Create()
{
 TSharedRef<FSlateStyleSet>StyleRef =
 FSlateGameResources::New
 (FCookbookStyle::GetStyleSetName(), "/Game/Slate",
 "/Game/Slate");
 FSlateStyleSet& Style = StyleRef.Get();
 Style.Set("NormalButtonBrush",
 FButtonStyle().
 SetNormal(BOX_BRUSH("Button",
 FVector2D(54,54),FMargin(14.0f/54.0f))));
 Style.Set("NormalButtonText",
 FTextBlockStyle(FTextBlockStyle::GetDefault())
 .SetColorAndOpacity(FSlateColor(FLinearColor(1,1,1,1))));
 returnStyleRef;
}

User Interfaces – UI and UMG

338

#undef IMAGE_BRUSH
#undef BOX_BRUSH
#undef BORDER_BRUSH
#undef TTF_FONT
#undef OTF_FONT

voidFCookbookStyle::ReloadTextures()
{
 FSlateApplication::Get().GetRenderer()
 ->ReloadTextureResources();
}
constISlateStyle&FCookbookStyle::Get()
{
 return *CookbookStyleInstance;
}

4. Create a new Game Mode subclass, StyledHUDGameMode, and add the
following code to its declaration:
#pragma once
#include "GameFramework/GameMode.h"
#include "StyledHUDGameMode.generated.h"
/**
 *
 */
UCLASS()
class UE4COOKBOOK_API AStyledHUDGameMode : public AGameMode
{
 GENERATED_BODY()
 TSharedPtr<SVerticalBox> Widget;
 public:
 virtual void BeginPlay() override;
};

5. Likewise, implement GameMode:
#include "UE4Cookbook.h"
#include "CookbookStyle.h"
#include "StyledHUDGameMode.h"
voidAStyledHUDGameMode::BeginPlay()
{
 Super::BeginPlay();
 Widget = SNew(SVerticalBox)
 + SVerticalBox::Slot()
 .HAlign(HAlign_Center)
 .VAlign(VAlign_Center)

Chapter 9

339

 [
 SNew(SButton)
 .ButtonStyle(FCookbookStyle::Get(),
 "NormalButtonBrush")
 .ContentPadding(FMargin(16))
 .Content()
 [
 SNew(STextBlock)
 .TextStyle(FCookbookStyle::Get(), "NormalButtonText")
 .Text(FText::FromString("Styled Button"))
]
];
 GEngine->GameViewport
 ->AddViewportWidgetForPlayer(GetWorld()
 ->GetFirstLocalPlayerFromController(),
 Widget.ToSharedRef(), 1);
}

6. Lastly, create a 54x54 pixel png file with a border around it for our button. Save it to
the Content | Slate folder with the name Button.png:

7. Finally, we need to set our game's module to properly initialize the style when it is
loaded. In your game module's implementation file, ensure it looks like this:
class UE4CookbookGameModule : public FDefaultGameModuleImpl
{
 virtual void StartupModule() override
 {
 FCookbookStyle::Initialize();
 };

User Interfaces – UI and UMG

340

 virtual void ShutdownModule() override
 {
 FCookbookStyle::Shutdown();
 };
};

8. Compile code, and set your game mode override to the new game mode as we've
done in the other recipes this chapter.

9. When you play the game, you will see that your custom border is around the button,
and the text is white rather than black.

How it works...
1. In order for us to create styles that can be shared across multiple Slate widgets,

we need to create an object to contain the styles and keep them in scope.

2. Epic provides the FSlateStyleSet class for this purpose. FSlateStyleSet
contains a number of styles that we can access within Slate's declarative syntax to
skin widgets.

3. However, it's inefficient to have multiple copies of our StyleSet object scattered
through the program. We really only need one of these objects.

4. Because FSlateStyleSet itself is not a singleton, that is, an object
that can only have one instance, we need to create a class that will manage our
StyleSet object and ensure that we only have the single instance.

5. This is the reason we have the FCookbookStyle class.

6. It contains an Initialize() function, which we will call in our module's startup
code.

Chapter 9

341

7. In the Initialize() function, we check if we have an instance of our StyleSet.

8. If we do not have a valid instance, we call the private Create() function to
instantiate one.

9. We then register the style with the FSlateStyleRegistry class.

10. When our module is unloaded, we will need to reverse this registration
process, then erase the pointer so it does not dangle.

11. We now have an instance of our class, created during module initialization by
calling Create().

12. You'll notice that Create is wrapped by a number of macros that all have similar
form.

13. These macros are defined before the function, and undefined after it.

14. These macros make it easier for us to simplify the code required within the
Create function by eliminating the need to specify a path and extension for all the
image resources that our Style might want to use.

15. Within the Create function, we create a new FSlateStyleSet object using the
function FSlateGameResources::New().

16. New() needs a name for the style, and the folder paths that we want to search for in
this Style Set.

17. This allows us to declare multiple Style Sets pointing to different directories,
but using the same names for the images. It also allows us to skin or restyle the
whole UI simply by switching to a Style Set in one of the other base directories.

18. New() returns a shared reference object, so we retrieve the actual
FStyleSet instance using the Get() function.

19. With this reference in hand, we can create the styles we want this set to
contain.

20. To add styles to a set, we use the Set() method.

21. Set expects the name of the style, and then a style object.

22. Style objects can be customized using the builder pattern.

23. We first add a style called "NormalButtonBrush". The name can be arbitrary.

24. Because we want to use this style to change the appearance of buttons, we
need to use FButtonStyle for the second parameter.

25. To customize the style to our requirements, we use the Slate builder syntax,
chaining whatever method calls that we need to set properties on our style.

26. For the first style in this set, we just change the visual appearance of the button when
it isn't being clicked or is in a non-default state.

27. That means we want to change the brush used when the button is in the normal
state, and so the function we use is SetNormal().

User Interfaces – UI and UMG

342

28. Using the BOX_BRUSH macro, we tell Slate that we want to use Button.png, which
is an image of 54x54 pixel size, and that we want to keep the 14 pixels in each
corner unstretched for the purposes of nine-slice scaling.

For a more visual explanation of the nine-slice scaling functionality,
take a look at SlateBoxBrush.h in the engine source.

29. For the second style in our Style Set, we create a style called "NormalButtonText".
For this style, we don't want to change everything from defaults in the style; we just
want to alter one property.

30. As a result, we access the default text style, and clone it using the copy
constructor.

31. With our fresh copy of the default style, we then change the color of the text
to white, first creating a linear color of R=1 G=1 B=1 A=1, then converting that to a
Slate color object.

32. With our Style Set configured with our two new styles, we can then return it to
the calling function, which is Initialize.

33. Initialize stores our Style Set reference, and eliminates the need for us to create
further instances.

34. Our style container class also has a Get() function, which is used to retrieve
the actual StyleSet for use in Slate.

35. Because Initialize() has already been called at the module startup,
Get() simply returns the StyleSet instance that was created within that function.

36. Within the game module, we add the code which actually calls Initialize
and Shutdown. This ensures that while our module is loaded, we will always have a
valid reference to our Slate Style.

37. As always, we create a Game Mode as the host for our UI, and we override
BeginPlay so that we can create the UI when the game starts.

38. The syntax for creating the UI is exactly the same as we've used in previous recipes—
creating a VerticalBox using SNew, and then using Slate's declarative syntax to
populate the box with other widgets.

39. It is important to note the two following lines:
.ButtonStyle(FCookbookStyle::Get(), "NormalButtonBrush")
.TextStyle(FCookbookStyle::Get(), "NormalButtonText")

40. The preceding lines are part of the declarative syntax for our button, and the
text that makes its label.

41. When we set the style for our widgets using a <Class>Style() method, we pass in
two parameters.

Chapter 9

343

42. The first parameter is our actual Style Set, retrieved using
FCookbookStyle::Get(), and the second is a string parameter with the name of
the style that we want to use.

43. With these minor changes, we override the styling of the widgets to use our custom
styles so that when we add the widgets to the player's viewport, they display our
customizations.

Create a custom SWidget/UWidget
The recipes in this chapter so far have shown you how to create UIs using the existing
primitive widgets.

Sometimes, it is convenient for developers to use composition to collect a number of UI
elements together, for example, to define a button class that automatically has a TextBlock
as a label rather than manually specifying the hierarchy every time they are declared.

Furthermore, if you are manually specifying the hierarchy in C++, rather than declaring a
compound object consisting of subwidgets, you won't be able to instantiate those widgets as a
group using UMG.

Getting ready
This recipe shows you how to create a compound SWidget that contains a group of widgets
and exposes new properties to control elements of those subwidgets. It will also show you how
to create a UWidget wrapper, which will expose the new compound SWidget class to UMG
for use by designers.

How to do it...
1. We need to add the UMG module to our module's dependencies.

2. Open up <YourModule>.build.cs, and add UMG to the following:
PrivateDependencyModuleNames.AddRange(new string[] {
"Slate", "SlateCore", "UMG" });

3. Create a new class called CustomButton, and add the following code to its
declaration:
#pragma once
#include "SCompoundWidget.h"
class UE4COOKBOOK_API SCustomButton : public
SCompoundWidget
{
 SLATE_BEGIN_ARGS(SCustomButton)

User Interfaces – UI and UMG

344

 : _Label(TEXT("Default Value"))
 , _ButtonClicked()
 {}
 SLATE_ATTRIBUTE(FString, Label)
 SLATE_EVENT(FOnClicked, ButtonClicked)
 SLATE_END_ARGS()
 public:
 void Construct(constFArguments&InArgs);
 TAttribute<FString> Label;
 FOnClickedButtonClicked;
};

4. Implement the class with the following in the corresponding cpp file:
#include "UE4Cookbook.h"
#include "CustomButton.h"
voidSCustomButton::Construct(constFArguments&InArgs)
{
 Label = InArgs._Label;
 ButtonClicked = InArgs._ButtonClicked;
 ChildSlot.VAlign(VAlign_Center)
 .HAlign(HAlign_Center)
 [SNew(SButton)
 .OnClicked(ButtonClicked)
 .Content()
 [
 SNew(STextBlock)
 .Text_Lambda([this] {return
 FText::FromString(Label.Get()); })
]
];
}

5. Create a second class, this time based on UWidget, called
UCustomButtonWidget.

6. Add the following includes:
#include "Components/Widget.h"
#include "CustomButton.h"
#include "SlateDelegates.h"

7. Declare the following delegates before the class declaration:
DECLARE_DYNAMIC_DELEGATE_RetVal(FString, FGetString);
DECLARE_DYNAMIC_MULTICAST_DELEGATE(FButtonClicked);

Chapter 9

345

8. Add the following protected members:
protected:
TSharedPtr<SCustomButton>MyButton;
virtualTSharedRef<SWidget>RebuildWidget() override;

9. Also add the following public members:
public:
UCustomButtonWidget();
UPROPERTY(BlueprintAssignable)
FButtonClickedButtonClicked;
FReplyOnButtonClicked();
UPROPERTY(BlueprintReadWrite, EditAnywhere)
FString Label;
UPROPERTY()
FGetStringLabelDelegate;
virtual void SynchronizeProperties() override;

10. Now create the implementation for UCustomButtonWidget:
#include "UE4Cookbook.h"
#include "CustomButtonWidget.h"
TSharedRef<SWidget>UCustomButtonWidget::RebuildWidget()
{
 MyButton = SNew(SCustomButton)
 .ButtonClicked(BIND_UOBJECT_DELEGATE(FOnClicked,
 OnButtonClicked));
 returnMyButton.ToSharedRef();
}
UCustomButtonWidget::UCustomButtonWidget()
:Label(TEXT("Default Value"))
{
}

FReplyUCustomButtonWidget::OnButtonClicked()
{
 ButtonClicked.Broadcast();
 returnFReply::Handled();
}
voidUCustomButtonWidget::SynchronizeProperties()
{
 Super::SynchronizeProperties();
 TAttribute<FString>LabelBinding =
 OPTIONAL_BINDING(FString, Label);
 MyButton->Label = LabelBinding;
}

User Interfaces – UI and UMG

346

11. Create a new Widget Blueprint by right-clicking on the Content Browser, selecting
User Interface, and then Widget Blueprint:

12. Open your new Widget Blueprint by double-clicking on it.

13. Find the Custom Button Widget in the Widget Palette:

Chapter 9

347

14. Drag an instance of it out into the main area.

15. With the instance selected, change the Label property in the Details panel:

16. Verify that your button has changed its label.

17. Now we will create a binding to demonstrate that we can link arbitrary blueprint
functions to the label property on our widget, which, in turn, drives the Widget's
textblock label.

18. Click on Bind to the right of the Label property, and select Create Binding:

19. Within the graph that is now displayed, place a Get Game Time in Seconds node:

20. Link the return value from the Get Game Time node to the Return Value pin
in the function:

User Interfaces – UI and UMG

348

21. A convert float to string node will be automatically inserted for you:

22. Next, open the Level Blueprints by clicking on the Blueprints button on the taskbar,
then selecting Open Level Blueprint:

23. Place a construct widget node into the graph:

Chapter 9

349

24. Select the class of widget to spawn as the new Widget Blueprint that we created a
moment ago within the editor:

25. Click and drag away from the Owning Player pin on the create widget node, and
place a Get Player Controller node:

26. Likewise, drag away from the return value of the create widget node, and place a Add
to Viewport node.

User Interfaces – UI and UMG

350

27. Lastly, link the BeginPlay node to the execution pin on the create widget node.

28. Preview your game, and verify that the widget we've displayed onscreen is our new
custom button with its label bound to the number of seconds that have elapsed since
the game started:

How it works...
1. In order to use the UWidget class, our module needs to include the UMG module as

one of its dependencies, because UWidget is defined inside the UMG module.

2. The first class that we need to create, however, is our actual SWidget class.

3. Because we want to aggregate two widgets together into a compound
structure, we create our new widget as a CompoundWidget subclass.

4. CompoundWidget allows you to encapsulate a widget hierarchy as a widget
itself.

5. Inside the class, we use the SLATE_BEGIN_ARGS and SLATE_END_ARGS
macros to declare an internal struct called FArguments on our new SWidget.

6. Within SLATE_BEGIN_ARGS and SLATE_END_ARGS, the SLATE_
ATTRIBUTE and SLATE_EVENT macros are used.

7. SLATE_ATTRIBUTE creates TAttribute for the type we give it.

Chapter 9

351

8. In this class, we declare TAttribute called _Label, which is more specifically a
TAttribute<FString>.

9. SLATE_EVENT allows us to create member delegates that we can broadcast when
something happens internally to the widget.

10. In SCustomButton, we declare a delegate with the signature FOnClicked,
called ButtonClicked.

11. SLATE_ARGUMENT is another macro, unused in this recipe, which creates an
internal variable with the type and name you provide, appending an underscore to the
start of the variable name.

12. Construct() is the function that widgets implement to self-initialize when
they are being instantiated.

13. You'll notice we also create a TAttribute and a FOnClicked instance ourselves,
without the underscores. These are the actual properties of our object into which the
arguments that we declared earlier will be copied.

14. Inside the implementation of Construct, we retrieve the arguments that
were passed to us in the FArgumentsstruct, and store them inside our actual
member variables for this instance.

15. We assign Label and ButtonClicked based on what was passed in, then we
actually create our widget hierarchy.

16. We use the same syntax as usual for this with one thing to note, namely, the
use of Text_Lambda to set the text value of our internal text block.

17. We use a lambda function to retrieve the value of our Label TAttribute using
Get(), then convert it to FText, and store it as our text block's Text property.

18. Now that we have our SWidget declared, we need to create a wrapper
UWidget object that will expose this widget to the UMG system so that designers can
use the widget within the WYSIWYG editor.

19. This class will be called UCustomButtonWidget, and it inherits from
UWidget rather than SWidget.

20. The UWidget object needs a reference to the actual SWidget that it owns,
so we place a protected member in the class that will store it as a shared pointer.

21. A constructor is declared, so is a ButtonClicked delegate that
can be set in blueprint. We also mirror a Label property that is marked as
BlueprintReadWrite so that it can be set in the UMG editor.

22. Because we want to be able to bind our button's label to a delegate, we add the last
of our member variables, which is a delegate that returns a String.

23. The SynchronizeProperties function applies properties that have been mirrored
in our UWidget class across to the SWidget that we are linked with.

User Interfaces – UI and UMG

352

24. RebuildWidget reconstructs the native widget this UWidget is associated with.
It uses SNew to construct an instance of our SCustomButton widget, and uses the
Slate declarative syntax to bind the UWidget's OnButtonClicked method to the
ButtonClicked delegate inside the native widget.

25. This means that when the native widget is clicked, the UWidget will be
notified by having OnButtonClicked called.

26. OnButtonClicked re-broadcasts the clicked event from the native button via the
UWidget's ButtonClicked delegate.

27. This means that UObjects and the UMG system can be notified of the button
being clicked without having a reference to the native button widget themselves. We
can bind to UCustomButtonWidget::ButtonClicked to be notified about it.

28. OnButtonClicked then returns FReply::Handled() to indicate that the
event does not need to propagate further.

29. Inside SynchronizeProperties, we call the parent method to ensure
that any properties in the parent are also synchronized properly.

30. We use the OPTIONAL_BINDING macro to link the LabelDelegate delegate in our
UWidget class to TAttribute, and in turn, the native button's label. It is important
to note that the OPTIONAL_BINDING macro expects the delegate to be called
NameDelegate based on the second parameter to the macro.

31. OPTIONAL_BINDING allows for the value to be overridden by a binding
made via UMG, but only if the UMG binding is valid.

32. This means that when UWidget is told to update itself, for example,
because the user customizes a value in the Details panel within UMG, it will recreate
the native SWidget if necessary, then copy the values set in Blueprint/UMG via
SynchronizeProperties so that everything continues to work as expected.

353

AI for Controlling NPCs

The role of Artificial Intelligence (AI) in your game is quite important. In this chapter,
we'll cover the following recipes for controlling your NPC characters with a bit of AI:

 f Laying down a Navigation Mesh

 f Following behavior

 f Connecting a Behavior Tree to a Character

 f Constructing Task nodes

 f Using Decorators for conditions

 f Using periodic services

 f Using Composite nodes – Selectors, Sequences, and Simple Parallel

 f AI for a Melee Attacker

Introduction
AI includes many aspects of a game's NPC as well as player behavior. The general topic of AI
includes pathfinding and NPC behavior. Generally, we term the selection of what the NPC does
for a period of time within the game as behavior.

AI in UE4 is well supported. A number of constructs exist to allow basic AI programming
from within the editor. If the AI provided inside the engine doesn't suit your needs, custom AI
programming from C++ can also be used.

10

AI for Controlling NPCs

354

Laying down a Navigation Mesh
A Navigation Mesh (also known as a Nav Mesh) is basically a definition of areas that an AI-
controlled unit considers passable (that is, areas which the "AI-controlled" unit is allowed to
move into or across). A Nav Mesh does not include geometry that would block the player if the
player tried to move through it.

Getting ready
Constructing a Nav Mesh based on your scene's geometry is fairly easy in UE4. Start with a
project that has some obstacles around it, or one that uses a terrain.

How to do it...
To construct your Nav Mesh, simply perform the following steps:

1. Go to Modes | Volumes.

2. Drag Nav Mesh Bounds Volume onto your viewport.

Press the P key to view your Nav Mesh.

3. Scale the Nav Mesh out to cover the area that the actors that use the Nav Mesh
should be allowed to navigate and pathfind in.

How it works…
A Nav Mesh doesn't block the player pawn (or other entities) from stepping on certain
geometry, but it serves to guide AI-controlled entities regarding where they can and cannot go.

Following behavior
The most basic AI-controlled follow behavior is available as a simple function node. All you have
to do is perform the steps that follow to get one AI-controlled unit to follow a unit or object.

Chapter 10

355

Getting ready
Have a UE4 project ready with a simple landscape or set of geometry on the ground— ideally,
with a cul-de-sac somewhere in the geometry for testing out AI movement functions. Create
a Nav Mesh over this geometry so that the AIMoveTo function will work as described in the
previous recipe.

How to do it…
1. Create a Nav Mesh for your level's geometry as described in the preceding recipe,

Laying down a Navigation Mesh.

2. Create a Blueprint class deriving from Character by finding the Character class in
the Class Viewer, right-clicking on it, and selecting Create Blueprint Class…

3. Name your Blueprint class BP_Follower.

4. Double-click on the BP_Follower class to edit its Blueprint.

5. In the Tick event, add an AIMoveTo node, which moves towards the player pawn (or
any other unit) as follows:

How it works…
The AIMoveTo node will automatically use a Nav Mesh if one is available. If a Nav Mesh is not
available, then the NPC unit won't move.

AI for Controlling NPCs

356

There's more…
If you do not want the unit to move with pathfinding using the Nav Mesh, then simply use a
Move To Location or Actor node.

A Move To Location or Actor node works even without a Nav Mesh on the geometry.

Connecting a Behavior Tree to a Character
A BehaviorTree chooses a behavior to be exhibited by an AI-controlled unit at any given
moment in time. Behavior Trees are relatively simple to construct, but there is a lot of setting
up to do to get one running. You also have to be familiar with the components available for
constructing your Behavior Tree to do so effectively.

A Behavior Tree is extremely useful for defining NPC behavior that is more varied than simply
moving towards an opponent (as shown in the previous recipe with AIMoveTo).

Getting ready
The process of setting up a Behavior Tree to control a character is fairly complicated. The
first thing we need is a Blueprint of a Character class derivative to control. We then need
to create a custom AI Controller object that will run our Behavior Tree to control our Melee
attacker character. The AIController class inside our Blueprint will run our Behavior Tree.

Chapter 10

357

The Behavior Tree itself contains a very important data structure called a Blackboard. The
Blackboard is like a chalkboard for containing variable values for the Behavior Tree.

A Behavior Tree hosts six different types of node, which are as follows:

1. Task: Task nodes are the purple nodes in the Behavior Tree that contain Blueprint
code to run. It's something that the AI-controlled unit has to do (code-wise). Tasks
must return either true or false, depending on whether the task succeeded or not
(by providing a FinishExecution() node at the end).

2. Decorator: A decorator is just a Boolean condition for the execution of a node.
It checks a condition, and is typically used within a Selector or Sequence block.

AI for Controlling NPCs

358

3. Service: Runs some Blueprint code when it ticks. The tick interval for these nodes is
adjustable (can run slower than a per-frame tick, for example, every 10 seconds). You
can use these to query the scene for updates, or a new opponent to chase, or things
like that. The Blackboard can be used to store queried information. Service nodes do
not have a FinishExecute() call at the end. There is an example Service node in
the Sequence node in the preceding diagram.

4. Selector: Runs all subtrees from left to right until it encounters a success. When it
encounters a success, execution returns back up the tree.

5. Sequence: Runs subtrees from left to right until it encounters a failure. When a
failure is encountered, execution goes back up the tree.

Selector nodes attempt to execute nodes until success (after
which it returns), while Sequence nodes execute all until a failure
is encountered (after which it returns).
Keep in mind that if your Tasks do not call FinishExecute(),
neither Selectors nor Sequences will be able to run more than one
of them in succession.

6. Simple Parallel: Runs a single task (purple) in parallel with a subtree (gray).

Chapter 10

359

How to do it...
1. Begin by creating a Blueprint for your Melee unit inside UE4. You should do so by

deriving a custom Blueprint from Character. To do so, go to the Class Viewer, type
Character, and right-click. Select Create Blueprint… from the context menu that
appears and name your Blueprint class BP_MeleeCharacter.

2. To use a Behavior Tree, we need to start by setting up a custom AI Controller for our
Character class derivative. Go to Content Browser and derive a Blueprint from the
AIController class—be sure to turn off Filters | Actors only first!

Non-actor class derivatives are not shown by default in the Class Viewer!
To make the AIController class show, you need to go to the Filters
menu and uncheck the Actors only menu option.

3. Create your Behavior Tree and Blackboard objects by right-clicking in Content
Browser and selecting Artificial Intelligence | Behavior Tree and Artificial
Intelligence | Blackboard.

4. Open the Behavior Tree object, and under Blackboard Asset in the Details panel,
select the Blackboard that you've created. Blackboards contain keys and values
(named variables) for your Behavior Tree to use.

5. Open your BP_AIMeleeController class derivative and go to the Event Graph.
Under Event BeginPlay, select and add a Run Behavior Tree node to the graph.
Under BTAsset, be sure to select your BehaviorTree_FFA_MeleeAttacker asset.

AI for Controlling NPCs

360

How it works…
A Behavior Tree is connected to an AI Controller, which in turn is connected to a Blueprint of a
Character. We will control the behavior of Character through the Behavior Tree by entering
Task and Service nodes to the diagram.

Constructing Task nodes
Task nodes are like function blocks. Each Task node you construct will allow you to bundle up
some Blueprint code for execution when certain conditions in your Behavior Tree are met.

Tasks have three distinct events: Receive Tick (with AI version), Receive Execute (AI), and
Receive Abort (AI). You can respond to any of these three events in the Task's Blueprint.
Usually, you should respond to the Receive Execute (AI version) of the Task.

Getting ready
To create a Task node, you should already have a Behavior Tree ready and attached to an
appropriate AI Controller and Blueprinted Character (see previous recipe).

How to do it…
1. To construct a Task node with an executable Blueprint code inside it, you must

select New Task from the menu bar from our Behavior Tree Blueprint editor. From
the drop-down menu that appears, select to base your New Task on BTTask_
BlueprintBase.

Unlike Behavior Tree or Blackboard creation, there isn't a way to create
a New Task directly from the Content Browser.

Chapter 10

361

2. Double-click and open the Behavior Tree task that you've just created to edit it.
Override any of the available events (listed in the Functions subheading under the
My Blueprint tab):

1. Receive Tick AI: The AI version of the Tick event for the Behavior Tree Task.
You should override this function when you need your task to Tick with the
actor that contains it. Do not override this function if you only want your task
to execute when it is called by the Behavior Tree (not when the game engine
ticks).

2. Receive Execute AI: The main function that you want to override. Receive
Execute AI allows you to run some Blueprint code whenever the Task node is
invoked from the Behavior Tree diagram.

3. Receive Abort AI: An abortion on a Behavior Tree task is called when
the task is being aborted (by a FinishAbort() node call from the
Blueprints diagram).

There are non-AI versions of the preceding functions, which have just
differing arguments: In the *AI version, the owner object is cast as a
Pawn, and there is an Owner Controller passed along to the event call.

Using Decorators for conditions
Decorators are nodes that allow you to enter a conditional expression on evaluation of
another node. They are fairly oddly named, but they are called Decorators because they
tend to dress up execution nodes with conditions for execution. For example, in the following
diagram, the MoveTo function is only executed when the Decorators condition is met:

There are several pre-packaged Decorators that come with UE4, including Blackboard
(variable checks), Compare Blackboard Entries, Cone Check, Cooldown, Does Path Exist,
and so on. In this recipe, we explore the use of some of these conditionals to control the
execution of different branches of a Behavior Tree.

AI for Controlling NPCs

362

Getting ready
The ability to create a Decorator is only available from the menu bar of an existing
Behavior Tree.

The New Decorator button is in the Menu bar of an existing Behavior Tree,
so to find it, you must have an existing Behavior Tree open.

How to do it…
1. In the Menu bar of an existing Behavior Tree, select New Decorator. Base it on the

existing Blueprint, BTDecorator_BlueprintBase.

2. Assemble your Blueprints diagram determining whether or not the Decorator's
condition is successful under the PerformConditionCheck function override.

3. Internals of a Decorator checking if the follow target from the Blackboard is inside
a bounding sphere of certain radius. Return true if the Decorator's condition is
met (and the block dependent on the Decorator executes), or return false if the
Decorator's condition is not met (and the block dependent on the Decorator does not
execute).

Chapter 10

363

How it works…
Decorators are just like if statements; the only difference is that they place a condition to
execute the node directly beneath them in a Behavior Tree.

Using periodic services
Services are nodes that contain Blueprint code to be executed periodically. Services are a lot
like Tasks, but they do not have a FinishExecute() call at the end.

Getting ready
Adding Services to your Behavior Tree is essential for periodic checks of things such as if
there are any new enemy units within range, or if your current target left focus. You can create
your own Services. In this recipe, we'll assemble a Service that will check if the opponent you
are following is still the closest within a visibility cone. If not, then the opponent changes.

There are four main events for a Service node (other than Tick):

1. Receive Activation AI: Triggers when the Behavior Tree starts and the node is first
activated.

2. Receive Search Start AI: Triggers when the Behavior Tree enters the underlying
branch.

3. Receive Tick AI: Triggers each frame where the Service is invoked. The bulk of the
work is performed here.

4. Receive Deactivation AI: Triggers when the Behavior Tree closes and the node is
deactivated.

How to do it…
1. First, add a New Service to your Behavior Tree via the New Service button in the

Behavior Tree Menu Bar:

AI for Controlling NPCs

364

2. Name your Service something that describes what it does, such as BehaviorTree_
Service_CheckTargetStillClosest.

3. Double-click on your Service to begin editing its Blueprint.

4. In the editor, add a Receive Tick AI node, and perform any updates to the Blackboard
that you need.

How it works…
Service nodes execute some Blueprint code at some regularly spaced time-intervals
(with the option of deviation). Inside a Service node, you will usually update your Blackboard.

Using Composite nodes – Selectors,
Sequences, and Simple Parallel

Composite nodes form tree nodes inside the Behavior Tree, and contain more than one thing
to execute within them. There are three types of Composite nodes:

 f Selectors: Go through children from left to right looking for a successful node. If a
node fails, it tries the next one. When successful, the node is completed and we can
go back up the tree.

 f Sequence: Execute from left to right, until a node fails. If the node is successful, do
the next one. If the node fails, go back up the tree.

 f Simple Parallel: Single task (purple) in parallel with some subtree (gray).

Getting ready
Using composite nodes is fairly straightforward. You only need a Behavior Tree to get started
with them.

How to do it…
1. Right-click anywhere on the blank space in your Behavior Tree diagram.

2. Select Composites | Selector or Composites | Sequence.

 � Selectors: Will execute all tasks in series until one succeeds

 � Sequence: Will execute all tasks in series until one fails

3. Append to the node a chain of Tasks or other Composite nodes, as desired.

Chapter 10

365

AI for a Melee Attacker
We can use a Behavior Tree to construct an NPC with melee attack behavior. The Melee
Attacker will have the following behavior:

1. Search for the best opponent to attack every 10 seconds. The best opponent to
attack is going to be the closest opponent within a SearchRadius. We will achieve
this using a Service. Chalk the opponent we are attacking into the Melee Attacker's
Behavior Tree Blackboard.

2. Move towards the opponent we are attacking (indicated by the Blackboard).

3. If we are within AttackRadius units of the opponent, damage the opponent we are
attacking every AttackCooldown seconds.

This is just one way to attack an opponent using a BehaviorTree.
You will find you can also attack inside an attack animation for the
Melee Attacker, in which case you could just indicate to Play Animation
when within AttackRadius of the opponent.

Getting ready
Have a Blueprint of a Melee Attacker Character ready. I called mine BP_Melee. Prepare the
BP_Melee Character's AI Controller to use a new Behavior Tree that we will create next.

How to do it...
1. From the root, we want a node that returns immediately if it fails. Create a new

Sequence node with a Service called BehaviorTree_Service_FindOpponent
inside it. Put the interval at 10 seconds for the node.

2. Build out the BehaviorTree_Service_FindOpponent node as follows:

AI for Controlling NPCs

366

3. Inside another Behavior Tree node, indicate a per-frame motion towards the
follow target:

4. Finally, we'd like to damage the opponent when in AttackRadius of him. When
the player is within AttackRadius, you can begin playing the attack animation
(which could kick off damage events to the opponent), run a Damage Service (every
AttackCooldown seconds), or simply Cooldown and Damage Opponent as shown
in the following screenshot:

367

Custom Materials
and Shaders

Material definition and creation tools in UE4 are fantastic, not to mention its real-time
rendering performance. When you see your first glittering gold shader, you will be amazed at
UE4's Material shading capabilities, which are possible with a bit of math. We will show you
how to use these tools through the following recipes:

 f Modifying color using a basic Material

 f Modifying position using a Material

 f Shader code via Custom node

 f The Material function

 f Shader parameters and Material instances

 f Glimmer

 f Leaves and Wind

 f Reflectance dependent on the viewing angle

 f Randomness – Perlin noise

 f Shading a Landscape

Introduction
In computer graphics, a shader is used to color something. Traditionally, shaders were so
called since they defined the shade that an object got based on its original color and light
source position.

11

Custom Materials and Shaders

368

Nowadays, shaders aren't really thought of as providing shading to an object as much as a
textured, final color.

Shaders are about determining the final color of an object given the light
source, geometric positions, and initial colors (including textures, and
more expensively, material properties).

There are two flavors of shader: vertex shaders and pixel shaders.

 f Vertex shaders: Color at the vertex (point in the mesh), and smoothly shade from one
3-space point to another 3-space point.

 f Pixel shaders: Color at the pixel (point on the screen). The 3-space physical location
of a pixel (aka fragment) is calculated using some simple math.

In UE4, we just call a shader a Material. Materials abstract the vertex and fragment
processing pipelines into block-programmable functions, so you don't have to think about the
GPU or code to get the graphical output you desire. You simply think in terms of blocks and
pictures. You can construct Materials and build GPU shading functionality without ever writing
a line of High Level Shading Language (HLSL), OpenGL Shading Language (GLSL), or Cg
(C for graphics) code!

You will commonly hear of three major GPU programming languages: HLSL,
GLSL, and Cg. GLSL is OpenGL's GPU programming language, while HLSL is
Microsoft's offering. After battling it out for popularity through the 90s and
the first decade of the twenty-first century, Cg was born in an attempt to
unify all GPU programming under it. Cg is still popular, but GLSL and HLSL
also remain in popular use.

Chapter 11

369

Modifying color using a basic Material
The primary usage of Materials is to make surfaces appear in the color you want them. In your
scene, you will have light sources and surfaces. Surfaces are coated in materials that reflect
and refract the light, which you then see using the camera's eye. The basic thing to do with a
material is to modify the color of a surface.

Do not ignore the importance of tuning your light sources to make
materials look as you wish them to look!

Getting used to the Material Editor takes some practice, but once you get used to it, you can
do amazing things with it. In this recipe, we'll just use some of the very basic functionality to
construct a wooden textured material.

Texture versus Material: Keep in mind that there is a big difference
between the terms texture and material. A texture is just an image file
(such as a photograph of some wood.png); a material, on the other
hand, is a combination of textures, colors, and mathematical formulae for
describing how a surface appears under light. Materials will account for
surface properties, such as color absorption, reflectance, and shininess,
while a texture is just a group of colored pixels (or texels, as the GPU calls
them).

Shaders are programmed just like normal C++ code, only far more restricted. There are
several parameter types you can choose from. Most of them will be floats or packages of
floats arranged in a vector format (float, float2, float3, float4). For things such as
positions and colors, you'll use float3 or float4; for things such as texture coordinates,
you'll use float2.

Getting ready
You need a clean UE4 project into which you want to place your new material. Install the
GameTexture Materials pack from the UE4 Marketplace (Epic Games Launcher Application)
in your UE4 project. It contains some required textures that we'll need for this recipe. You also
need a piece of simple geometry to show the results of your shader.

Custom Materials and Shaders

370

How to do it...
1. To create a basic material, right-click in the Content Browser, and create a Material

(available from the top four Basic Asset elements).

2. Name your material (for example, GoldenMaterial), then double-click on it to
edit it.

3. Welcome to the Material Editor:

Chapter 11

371

4. You can tell it is the Material Editor because of the presence of the Material output
node on the right. To the left is a 3D rendered sphere demonstrating what your
material looks like. Materials start out as a kind of coal-ish black semi-shiny material.
We can adjust all the material parameters, believe it or not, to make anything from
a material that emits light like the Sun, to water, or to the texture of a unit's armor.
Let us begin by adjusting the output colors of the material to create a gold-colored
metallic material.

1. Change the Base Color to yellow by right-clicking on any blank spot in
the Material Editor window and choosing a Constant3Vector (which
represents an RGB color). Adjust the color by double-clicking on the node
and dragging around the value of the color swatches. Connect the output of
the Constant3Vector to Base Color, and wait for the 3D picture on the left
to reload with your new material's appearance. Connect the output of the
Constant3Vector to the Base Color to give the material a yellow appearance
as shown in the following screenshot:

2. Select a metallicness level for all channels by attaching a constant value
to the Metallic input, and setting it to 1. 1 is very metallic, and 0 is not
metallic at all (and so will look plasticy, like the material shown in the next
screenshot).

Custom Materials and Shaders

372

3. Choose a Specular value for the material, again between 0 and 1. Specular
materials are shiny, while non-specular ones are not.

4. Choose a Roughness value for the material. Roughness refers to how
spread out the specular highlight is. If Roughness is high (near 1.0), then
the surface is clay-like, with almost specular highlight. The specular highlight
appears fat and wide near the values 0.7 or 0.8. When roughness is near 0,
then the specular highlight is very sharp and thin (extremely shiny/mirror-like
surface).

The material on the left has roughness = 0, and the material on the right
has roughness = 1.

5. Apply your material to an object in your scene by clicking and dragging the material
onto the model mesh that you want the material to apply to. Alternatively, select a
model mesh component, and the new material that you have created by name in the
Details panel.

6. Finally, create a light in the scene to examine your material's response properties
further. Without a light, every material appears black (unless its an emissive
material). Add a light via Modes | Lights.

Chapter 11

373

Modifying position using a Material
A less common thing to do is to use a Material to modify an object's position. This is
commonly done in things such as water shaders. We do it using the World Position Offset
node inside the Material's output.

We can modulate the output position of a vertex using some GPU math. This lightens the load
of rendering realistic water on the CPU by a significant amount.

Getting ready
Create a piece of geometry in your world. Construct a new shader called Bob, which we'll edit
to produce a simple bobbing motion for objects rendered with the material.

How to do it...
1. In your new Material (named Bob), right-click and add Texcoord and Time

Input nodes.

2. Cascade the sum of the Texcoord (for spatial) and Time Input nodes through a
sin() function call to create some wavy displacement. Multiply the output of the
sin() function, and pass as Z-inputs to World Displacement.

Custom Materials and Shaders

374

Part of the simple water shader given in the code of Chapter11
that produces the displacement.

3. Select PN Triangles under Tessellation | D3D11Tessellation Mode, and set
Tessellation Multiplier in the material to 1.0.

Normally, specularity and translucency cannot be combined in UE4
shaders. However, the Surface Perpixel (experimental, limited features)
Lighting Mode does allow you to enable both. In addition to selecting
this lighting mode, you must remember to ensure to press ` and type
r.ForwardLighting 1 in the Stats console window.

Shader code via Custom node
If you prefer code to diagrammatic blocks, you're in luck. You can write your own HLSL code to
deploy to the GPU for the shading of some vertices in your project. We can construct Custom
nodes that simply contain math code working on named variables to perform some generic
computation. In this recipe, we'll write a custom math function to work with.

Getting ready
You need a material shader, and a general mathematical function to implement. As an
example, we'll write a Custom node that returns the square of all inputs.

Chapter 11

375

How to do it...
1. In order to create a custom material expression, simply right-click anywhere on the

canvas, and select Custom.

2. With your new Custom block selected, go to the Details panel on the left side of
your Material Editor window (choose Window | Details if your Details panel is not
displayed).

3. Under Description, name your Custom block. For example, Square3, because we
plan to square three float inputs and return a float3.

4. Click the + icon as many times you need to generate as many inputs as you need to
serve. In this case, we're going to serve three float inputs.

5. Name each input. We've named ours x, y, and z in the diagram that follows. To use
each input in the calculation, you must name it.

6. Select the output type. Here we chose to output a float3.

7. Enter the computation in the Code section at the top using the named variables you
have created. The code we return here is as follows:

return float3(x*x, y*y, z*z);

Custom Materials and Shaders

376

What this does is construct a 3-float vector, and return the square of X in
the x value, the square of Y in the y value, and the square of Z in the z
value.
To return different values for X, Y, Z components of a vector type, we had
to return a call to a float3 or float4 constructor. If you're not returning
a vector type, you can just use a return statement (without calling a
float constructor).

How it works…
A custom node is really just a bit of HLSL code. Any valid HLSL code can be used in the code
text field. A vertex or pixel shader program has several standard inputs in it. These standard
inputs have been defined for a very long time, and they are the parameters you can use to
change the way your geometry renders.

HLSL and Cg have a concept called semantics, which attaches a kind of concrete typing to a
float. This is done so that the external program calling the shader knows where to put which
input when calling your vertex or pixel shading program.

In the following Cg function signature, in addition to being a float variable, inPosition
is semantically a POSITION typed variable inTexcoord a TEXCOORD typed variable, and
inColor a COLOR typed variable. Inside the shader, you can use the variables for anything
you want, the semantics are simply for routing the correct input to the correct variable (to
make sure that the color comes in on the COLOR typed variable—otherwise, we'd have to do
something like track the order in which the parameters are specified or something!)

The output parameters of the function specify how the output of the shader is to be
interpreted. Interpretation is only for the recipient of the output data of your program (the next
step in the rendering pipeline). Inside your shader program you know you are just writing out
a bunch of floats to the shader pipeline. There's nothing that forbids you from mixing different
types of semantics inside the shader. A COLOR semantic variable can be multiplied by a
POSITION semantic input, and sent out as a TEXCOORD semantic output if you so desired.

Chapter 11

377

The Material function
As always, modularity is one of the best practices in programming. Material shaders are
no exception: it is far better if your shader blocks are modular, and can be boxed out and
identified as named functions. This way, not only are your shader blocks clearer, but they can
also be reused in multiple Material shaders, or even exported to your local UE4 library for
future use in other projects.

Getting ready
A reusable or repeatable block of shader functionality can be factored out of your custom
material shader program. In this example, we'll write a simple function series—Square,
Square2, Square3, and Square4—that squares input values. Get ready to perform the work
in this recipe by opening a UE4 project and navigating to the Content Browser.

How to do it...
1. Right-click in the Content Browser, and select Materials & Textures | Material

Function.

2. Name your Material Function Square.

3. Double-click on Material Function.

Custom Materials and Shaders

378

4. As soon as you open Material Function, deselect the Output Result node by left-
clicking anywhere in the blank canvas space of the Material Editor. Take a look at the
Details panel, and note that the Function's exposure to the UE4 library is optionally
available:

5. The Expose to Library checkbox appears in the Details panel when no nodes are
selected in the Material Function Editor screen.

6. Right-click anywhere in the blank space in the Material Function editor, and select
Input. Name your input. Notice how Input nodes are only available in the Material
Functions editor, not in the normal Material editing view.

7. From any regular Material, invoke your function by doing one of the following:

1. Right-click in the blank space, and select MaterialFunction, then select
your MaterialFunction from the drop-down menu.

2. Right-click and type the name of your Material Function (this requires you to
have exposed your Material Function previously).

8. If you don't want to expose your Material Function to the UE4 library, then you have
to use a MaterialFunction block to call your custom function.

9. Right-click anywhere in the Material Function editor, and select Output.

How it works…
Material Functions are some of the most useful blocks you can create. With them, you can
modularize your shader code to be much more neat, compact, and reusable.

There's more…
Migrating your functionality to the shader library is a good idea. You can make your custom
function appear in the function library by choosing Expose to Library in the root of the shader
(provided you have nothing selected in the Material Editor window).

When developing a Material Function, sometimes, it's helpful to change the Material Preview
node to a node other than the output node. Preview a specific node's output by right-clicking
the output jack for any node and selecting Start Previewing Node.

Chapter 11

379

The window in the top-left corner of the Material Editor will now show the output of the
node you are previewing. In addition, the text Previewing will be added to the node you are
previewing (if it's not the final output node). Ensure that Live Preview is enabled in the menu
bar at the top of the Material Editor. Typically, you would want the final output to be previewed.

Shader parameters and Material instances
A parameter to a shader is going to be a variable input to that shader. You can configure
scalars or vectors to be used as input parameters to your shader. Some materials within UE4
come preprogrammed with material parameters exposed.

Getting ready
In order to set up a parameter to a shader, you first need a shader with something that you
want to modify with a variable. A good thing to modify with a variable is the suit color of a
character. We can expose the color of the suit as a shader parameter that we multiply suit
color by.

How to do it...
1. Construct a new Material.

2. Within the Material, create a VectorParameter. Give the parameter a name,
such as Color. Give it a default value, such as blue or black.

Custom Materials and Shaders

380

3. Close the Material.

4. In Content Browser, right-click on the Material with the parameter in it, and select
Create Material Instance.

5. Double-click on your Material instance. Check the box beside your
VectorParameter name, and voila! Your VectorParameter is customizable
without further affecting the base functionality of the Material.

6. Further, if you change the base functionality of the Material, the Material instance will
inherit those changes without needing any further configurations.

How it works…
Material Parameters allow you to edit the value of variables sent to a Material without editing
the Material itself. In addition, you can also change a Material instance's values from C++
code quite easily. This is useful for things such as team colors, and the like.

Glimmer
Some shader functionality is easily accessible using the standard nodes inside the UE4
Material Editor. You can come up with some neat speckled effects, such as the glittering gold
shader we show you how to construct in the following recipe. The purpose of this recipe is to
familiarize you with the Material Editor's base functions so that you can learn to construct your
own material shaders.

Getting ready
Create an asset (such as a treasure chest) that you want to glow, or open the the source code
package of Chapter11 to find the treasureChest.fbx model.

What we'll do is move a plane across the object of a certain thickness W. When the plane
passes over the geometry, the emissive color channel is activated, and a glimmer effect is
created across the treasure.

Chapter 11

381

We expose several parameters to control the glimmer, including Speed, Period (time between
glimmers), Width, Gain, PlaneDirection, and finally, Color.

How to do it...
1. Create a new Material by right-clicking in the Content Browser, and selecting

Material.

2. Add input parameters to scale time as shown in the following image, pulling in a Time
input, and making it periodic by calling Fmod with the period of time:

3. Fmod with period will make time follow a sawtooth pattern. The value of time read
will not increase past the Period, because we will keep kicking it down to 0 using the
fmod operation.

4. Provide the OnPlane function in a separate file. The OnPlane function uses the
Plane Equation Ax + By + Cz + D = 0 to determine if an input point is on a plane or
not. Pass the LocalPosition coordinates into the OnPlane function to determine
if, in the given frame, this section should be highlighted with emissive glow in the
geometry or not.

How it works…
An imaginary plane of light passes through the geometry at the speed specified by speed,
once every Period seconds. The plane starts at the corner of a bounding box, in the direction
specified by PlaneDirection. The plane always starts at the corner of the box where it will pass
through the entire volume when the plane is shifted forward with time.

Custom Materials and Shaders

382

Leaves and Wind
In this recipe, we'll write a simple particle shader demonstrating how to create leaves in wind.
We can do so using a Particle Emitter combined with a Material Shader that "shades" our
leaves to give them the appearance of blowing in the wind.

Getting ready
To begin, you'll need a leaf texture as well as a scene in which to place the falling leaves. In
the Chapter11 code package, you'll find a scene called LeavesAndTree that contains a
deciduous tree that you can use.

How to do it...
1. Create a new particle emitter by right-clicking in the Content Browser, and choosing

Particle System.

2. Construct a new Material shader by right-clicking in the Content Browser and
choosing Material. Your leaf material should contain a texture of a leaf in the
BaseColor component. We'll edit the World Position of the leaf in a later step to
represent a jitter in motion represented by the wind.

3. Add a couple of parameters to modify the Leaves particle emitter:

1. Spawn should have a nice high rate of about 100.

2. Initial Location can be distributed in a cube of 100 units per side.

3. Lifetime can be 4-5 seconds.

4. Initial Velocity should be something like ranging from (-50,-50,-100) to
(25,25,-10).

Chapter 11

383

5. Initial Color can be a distribution vector with values at green, yellow, and
red.

6. Acceleration can be (0,0,-20).

7. Initial Rotation Rate can be 0.25 (max).

8. An Orbit parameter can be added with distribution (0,0,0) to (0,10,10).

4. Wind: Create a Material Parameter Collection (MPC) by right-clicking anywhere
in the blank space in Content Browser and selecting New Material Parameter
Collection.

5. Double-click to edit your new Material Parameter Collection, and enter a new
parameter TheWind. Give it initial values of (1, 1, 1).

6. In your level Blueprint (Blueprints | Level Blueprint), create a client-side variable
called TheWind. We will send this variable down to the GPU in each frame after we
change it locally at the CPU. Initialize the TheWind variable to (1, 1, 1) in event
BeginPlay.

7. In the Event Tick, modify the wind to your liking. In my version of the wind, I have
multiplied the wind in each frame by a random vector with values between [-1,1] in
three dimensions. This gives the wind a nice jittery look per-frame.

8. Send the wind variable update down to the GPU by choosing a Set Vector Parameter
Value node immediately after you modify the wind vector. The Set Vector Parameter
Value must reference a variable inside a Material Parameter Collection, so reference
TheWind variable inside the Material Parameter Collection that we created in STEP 4.

9. Modify WorldPositionOffset by some multiple of TheWind each frame. Since
TheWind variable varies slowly, the modification presented in each frame will be a
slight variation of the modification presented in the last frame, producing a smooth
leaf motion.

How it works…
The leaves fall at more or less a constant rate with additional light gravity, but they are pulled
around by a constantly varying wind vector inside the shader.

Custom Materials and Shaders

384

Reflectance dependent on the viewing angle
The tendency of the reflectance of a material to depend on the viewing angle is called
the Fresnel effect. A material may be more specular from a grazing angle than from a
head-on angle.

The Fresnel effect has magnitude at a grazing angle. This water material
seen in the preceding screenshot has high specularity and opacity at a
grazing angle due to use of the Fresnel effect.

UE4 has a specially built-in capability to account for this. We'll construct a water shader that
has view-angle dependence for translucency to give an example of how to use the Fresnel
effect realistically.

Getting ready
You need a new shader to which you want to add the Fresnel effect. Preferably, select a
material that you want to look a bit different depending on the viewing angle.

How to do it...
1. Inside your material, drive a channel (either Opacity, Specularity, or a diffuse color) by

the output of a Fresnel node.

2. The Fresnel node's parameters Exponent and Base Reflect Fraction can be adjusted
as follows:

1. Exponent: Describes how Fresnel the material is. Higher values here
exaggerate the Fresnel effect.

2. Base Reflect Fraction: Lower numbers exaggerate the Fresnel Effect.
For a value of 1.0, the Fresnel effect will not manifest.

Chapter 11

385

How it works…
There is a fair bit of math behind implementing the Fresnel effect, but using it to drive a
component in a material is fairly easy, and can help you come up with some very beautiful
looking materials.

Randomness – Perlin noise
Some shaders benefit from the ability to use random values. Each Material has a few nodes
that can help add randomness to a shader. Randomness from a Perlin noise texture can be
used to generate interesting-looking materials such as marbled materials. The noise can also
be used to drive bump maps, height maps, and displacement fields for some neat effects.

Getting ready
Choose a material to which you'd like to add some randomness. Open the Material in the
Material Editor, and follow the steps.

How to do it...
1. Insert a Noise node into your Material Editor window.

2. Normalize the coordinates of the object you're adding the noise to. You can use math
such as the following to do so:

1. Subtract the minimum from each processed vertex in the system to take the
object to sit at the origin.

2. Divide the vertex by the size of the object to put the object in a unit box.

Custom Materials and Shaders

386

3. Multiply the vertex value by 2 to expand the unit box from 1x1 to 2x2.

4. Subtract 1 from the vertex values to move the unit to being centered in the
origin with values from [-1,-1,-1] to [+1,+1,+1].

3. Select a value from which to draw noise. Keep in mind that noise works extremely
well with input values between 1 1x− ≤ ≤ + . Outside of this range, Perlin's noise
starts to appear snowy when zoomed out (because there will be too much variation in
the output values over your input x).

How it works…
Perlin's noise can help you produce some beautiful marbly textures and patterns. Besides
using it in graphics, you can also use Perlin noise to drive motion and other phenomena in a
natural looking way.

Shading a Landscape
Landscape shaders are relatively easy to construct. They allow you to specify multi-texturing
for a very large custom piece of geometry called a Landscape.

Getting ready
Landscape objects are fantastic for use as a ground plane for your game world level. You
can construct multiple landscapes in the same level using the Landscape tab. Access the
Landscape palette in the Modes panel by clicking on the picture of a mountain, as shown in
the following screenshot:

Chapter 11

387

How to do it...
1. Construct a new Landscape object by clicking on Modes | Landscape. Under the

New Landscape heading, select the Create New radio button. You will see a green
wireframe overlay proposing the new landscape. You can adjust its size using the
Section Size and Sections Per Component settings.

The landscape will tile the textures we select for it Section Size * Sections
Per Component * Number of Components times when we finally texture.
You can keep note of this number if you want to make the landscape
texture tile fewer times—simply divide the UV coordinates fed to the
textures by the number computed in the preceding line.

2. Do not click on anything else in this dialog yet, as we still have to construct our
Landscape Material. This is outlined in the following steps.

3. Navigate to Content Browser and create a new Material for use by your landscape.
Call it LandscapeMaterial.

4. Edit your LandscapeMaterial by double-clicking on it. Right-click anywhere in the
blank space and select a LandscapeCoordinate node to feed the UV coordinates
through the textures that we're about to apply.

 � To reduce the tiling on the Landscape, you'll need to divide the output of the
LandscapeCoordinate node by the total size of the landscape (Section
Size * Sections Per Component * Number of Components) (as described in
a tip in Step 1)

5. Add a LandscapeLayerBlend node to the canvas. Lead the output of the node to
the Base Color layer.

6. Click on the LandscapeLayerBlend node, and add a few Layers to the element
in the Details tab. This will allow you to blend between the textures using Texture
Painting. Name each, and select the method for blending from among the following
options:

 � By painted weight (LB Weight Blend).

 � By alpha value inside the texture (LB Alpha Blend).

 � By height (LB Height Blend).

7. Set other parameters for each LandscapeLayer you're adding as you desire.

8. Feed in the textures, one for each layer of Landscape blend.

9. Reduce the specularity of the landscape to 0 by adding a constant 0 input to the
Specular input.

10. Save and close your material.

Custom Materials and Shaders

388

11. Go to the Modes | Landscape tab now, and select your newly created
LandscapeMaterial in the drop-down menu.

12. Under the Layers section, click on the + icon beside each of the Landscape layers
that are available. Create and save a Target Layer object for each Landscape layer
that you have.

13. Finally, scroll down the Landscape tab, and click on the Create button.

14. Click on the Paint tab, select a brush size and a texture to paint with, and begin
texture painting your landscape.

How it works…
Landscape materials can be blended either by height, or by manual artistry, as shown
in this recipe.

389

Working with UE4 APIs

The Application Programming Interface (API) is the way in which you, as the programmer,
instruct the engine, and so the PC, what to do. All of UE4's functionality is encapsulated into
modules, including very basic and core functionality. Each module has an API for it. To use an
API, there is a very important linkage step, where you must list all APIs that you will be using
in your build in a ProjectName.Build.cs file, which is located in your Solution Explorer
window.

Do not name any of your UE4 projects the exact same
name as one of the UE4 API names!

12

Working with UE4 APIs

390

There are a variety of APIs inside the UE4 engine that expose functionality to various essential
parts of it. Some of the interesting APIs that we'll explore in this chapter are as follows:

 f Core/Logging API – Defining a custom log category

 f Core/Logging API – FMessageLog to write messages to the Message Log

 f Core/Math API – Rotation using FRotator

 f Core/Math API – Rotation using FQuat

 f Core/Math API – Rotation using FRotationMatrix to have one object face another

 f Landscape API – Landscape generation with Perlin noise

 f Foliage API – Adding trees procedurally to your level

 f Landscape and Foliage APIs – Map generation using Landscape and Foliage APIs

 f GameplayAbilities API – Triggering an actor's gameplay abilities with game controls

 f GameplayAbilities API – Implementing stats with AttributeSet

 f GameplayAbilities API – Implementing buffs with GameplayEffect

 f GameplayTags API – Attaching GameplayTags to an actor

 f GameplayTasks API – Making things happen with GameplayTasks

 f HTTP API – Web request

 f HTTP API – Progress bars

Introduction
The UE4 engine's base functionality available in the editor is quite broad. The functionality
from C++ code is actually grouped out into little sections called APIs. There is a separate
API module for each important functionality in the UE4 codebase. This is done to keep the
codebase highly organized and modular.

Using different APIs may require special linkage in your Build.cs file!
If you are getting build errors, be sure to check that the linkage with the
correct APIs is there!

The complete API listing is located in the following documentation: https://docs.
unrealengine.com/latest/INT/API/.

https://docs.unrealengine.com/latest/INT/API/
https://docs.unrealengine.com/latest/INT/API/

Chapter 12

391

Core/Logging API – Defining a custom log
category

UE4 itself defines several logging categories, including categories such as LogActor, which
has any log messages to do with the Actor class, and LogAnimation, which logs messages
about Animations. In general, UE4 defines a separate logging category for each module. This
allows developers to output their log messages to different logging streams. Each log steam's
name is prefixed to the outputted message as shown in the following example log messages
from the engine:

LogContentBrowser: Native class hierarchy updated for
'HierarchicalLODOutliner' in 0.0011 seconds. Added 1 classes and 2
folders.
LogLoad: Full Startup: 8.88 seconds (BP compile: 0.07 seconds)
LogStreaming:Warning: Failed to read file
'../../../Engine/Content/Editor/Slate/Common/Selection_16x.png'
error.
LogExternalProfiler: Found external profiler: VSPerf

The above are sample log messages from the engine, each prefixed with their log category.
Warning messages appear in yellow and have Warning added to the front as well.

The example code you will find on the Internet tends to use LogTemp for a UE4 project's own
messages, as follows:

UE_LOG(LogTemp, Warning, TEXT("Message %d"), 1);

We can actually improve upon this formula by defining our own custom LogCategory.

Getting ready
Have a UE4 project ready in which you'd like to define a custom log. Open a header file that
will be included in almost all files using this log.

How to do it…
1. Open the main header file for your project; for example, if your project's name

is Pong, you'll open Pong.h. Add the following line of code after #include
Engine.h:
DECLARE_LOG_CATEGORY_EXTERN(LogPong, Log, All); // Pong.h

Working with UE4 APIs

392

Defined in AssertionMacros.h, there are three arguments to this declaration,
which are as follows:

 � CategoryName: This is the log category name being defined (LogPong
here)

 � DefaultVerbosity: This is the default verbosity to use on log messages

 � CompileTimeVerbosity: This is the verbosity to bake into compiled code

2. Inside the main .cpp file for your project, include the following line of code:
DEFINE_LOG_CATEGORY(LogPong); // Pong.cpp

3. Use your log with the various display categories, as follows:

UE_LOG(LogPong, Display, TEXT("A display message, log is
working")); // shows in gray
UE_LOG(LogPong, Warning, TEXT("A warning message"));
UE_LOG(LogPong, Error, TEXT("An error message "));

How it works…
Logging works by outputting messages to the Output Log (Window | Developer Tools |
Output Log) as well as a file. All information outputted to the Output Log is also mirrored to a
simple text file that is located in your project's /Saved/Logs folder. The extension of the log
files is .log, with the most recent one being named YourProjectName.log.

There's more…
You can enable or suppress log messages for a particular log channel from within the editor
using the following console commands:

Log LogName off // Stop LogName from displaying at the output
Log LogName Log // Turn LogName's output on again

If you'd like to edit the initial values of the output levels of some of the built-in log types, you
can use a C++ class to create changes to the Engine.ini config file. You can change the
initial values in the engine.ini configuration file. See https://wiki.unrealengine.
com/Logs,_Printing_Messages_To_Yourself_During_Runtime for more details.

https://wiki.unrealengine.com/Logs,_Printing_Messages_To_Yourself_During_Runtime
https://wiki.unrealengine.com/Logs,_Printing_Messages_To_Yourself_During_Runtime

Chapter 12

393

See also
 f UE_LOG sends its output to Output Window. If you'd like to use the more specialized

Message Log window in addition, you can alternatively use the FMessageLog object
to write your output messages. FMessageLog writes to both the Message Log and
the Output Window. See the next recipe for details.

Core/Logging API – FMessageLog to write
messages to the Message Log
FMessageLog is an object that allows you to write output messages to the Message Log
(Window | Developer Tools | Message Log) and Output Log (Window | Developer Tools |
Output Log) simultaneously.

Getting ready
Have your project ready and some information to log to Message Log. Display Message Log
in your UE4 Editor. The following screenshot is of the Message Log:

How to do it…
1. Add #define to your main header file (ProjectName.h) defining LOCTEXT_

NAMESPACE as something unique to your codebase:
#define LOCTEXT_NAMESPACE "Chapter12Namespace"

This #define is used by the LOCTEXT() macro, which we use to generate FText
objects, but is not seen in output messages.

2. Declare your FMessageLog by constructing it somewhere very global. You can use
extern in your ProjectName.h file. Consider the following piece of code as an
example:
extern FName LoggerName;
extern FMessageLog Logger;

Working with UE4 APIs

394

3. And then, create your FMessageLog by defining it in a .cpp file and registering it
with MessageLogModule. Be sure to give your logger a clear and unique name
on construction. It's the category of your log that will appear to the left of your log
messages in Output Log. For example, ProjectName.cpp:
#define FTEXT(x) LOCTEXT(x, x)
FName LoggerName("Chapter12Log");
FMessageLog CreateLog(FName name)
{
 FMessageLogModule& MessageLogModule =
 FModuleManager::LoadModuleChecked<FMessageLogModule>
 ("MessageLog");
 FMessageLogInitializationOptions InitOptions;
 InitOptions.bShowPages = true;// Don't forget this!
 InitOptions.bShowFilters = true;
 FText LogListingName = FTEXT("Chapter 12's Log Listing"
);
 MessageLogModule.RegisterLogListing(LoggerName,
 LogListingName, InitOptions);
}
// Somewhere early in your program startup
// (eg in your GameMode constructor)
AChapter12GameMode::AChapter12GameMode()
{
 CreateLogger(LoggerName);
 // Retrieve the Log by using the LoggerName.
 FMessageLog logger(LoggerName);
 logger.Warning(
 FTEXT("A warning message from gamemode ctor"));
}

The KEY to LOCTEXT (first argument) must be unique or you will get a
previously hashed string back. If you'd like, you can include a #define
that repeats the argument to LOCTEXT twice, as we did earlier.

#define FTEXT(x) LOCTEXT(x, x)

4. Log your messages using the following code:

Logger.Info(FTEXT("Info to log"));
Logger.Warning(FTEXT("Warning text to log"));
Logger.Error(FTEXT("Error text to log"));

Chapter 12

395

This code utilizes the FTEXT() macro defined earlier. Be sure it is in your codebase.

Constructing your message log again after initialization retrieves a copy of
the original message log. For example, at any place in the code, you can
write the following code:

FMessageLog(LoggerName).Info(FTEXT("An info
message"
));

Core/Math API – Rotation using FRotator
Rotation in UE4 has such complete implementation that it can be hard to choose
how to rotate your objects. There are three main methods—FRotator, FQuat, and
FRotationMatrix. This recipe outlines the construction and use of the first of the three
different methods for the rotation of objects—the FRotator. Using this, and the following two
recipes, you can select at a glance a method to use to rotate your objects.

Getting ready
Have a UE4 project that has an object you can get a C++ interface with. For example, you can
construct a C++ class Coin that derives from Actor to test out rotations with. Override the
Coin::Tick() method to apply your rotations from the C++ code. Alternatively, you can call
these rotation functions in the Tick event from Blueprints.

In this example, we will rotate an object at a rate of one degree per second. The actual
rotation will be the accumulated time since the object was created. To get this value, we'll just
call GetWorld()->TimeSeconds.

How to do it…
1. Create a custom C++ derivative of the Actor class called Coin.

2. In the C++ code, override the ::Tick() function of the Coin actor derivative. This
will allow you to effect a change to the actor in each frame.

3. Construct your FRotator. FRotators can be constructed using a stock pitch, yaw,
and roll constructor, as shown in the following example:
FRotator(float InPitch, float InYaw, float InRoll);

4. Your FRotator will be constructed as follows:
FRotator rotator(0, GetWorld()->TimeSeconds, 0);

Working with UE4 APIs

396

5. The standard orientation for an object in UE4 is with Forward facing down the +X axis.
Right is the +Y axis, and Up is +Z.

6. Pitch is rotation about the Y axis (across), yaw is rotation about the Z axis (up), and
roll is rotation about the X axis. This is best understood in the following three points:

 � Pitch: If you think of an airplane in UE4 standard coordinates, the Y axis
goes along the wingspan (pitching tilts it forward and backward)

 � Yaw: The Z axis goes straight up and down (yawing turns it left and right)

 � Roll: The X axis goes straight along the fuselage of the plane (rolling does
barrel rolls)

You should note that in other conventions, the X axis is
pitch, the Y axis is yaw, and the Z axis is roll.

7. Apply your FRotator to your actor using the SetActorRotation member function,
as follows:

FRotator rotator(0, GetWorld()->TimeSeconds, 0);
SetActorRotation(rotation);

Core/Math API – Rotation using FQuat
Quaternions sound intimidating, but they are extremely easy to use. You may want to review
the theoretical math behind them using the following videos:

 f Fantastic Quaternions by Numberphile – https://www.youtube.com/
watch?v=3BR8tK-LuB0

https://www.youtube.com/watch?v=3BR8tK-LuB0
https://www.youtube.com/watch?v=3BR8tK-LuB0

Chapter 12

397

 f Understanding Quaternions by Jim Van Verth – http://gdcvault.com/
play/1017653/Math-for-Game-Programmers-Understanding

However, we won't cover the math background here! In fact, you don't need to understand
much about the math background quaternions to use them extremely effectively.

Getting ready
Have a project ready and an Actor with an override ::Tick() function that we can enter the
C++ code into.

How to do it…
1. To construct a quaternion, the best constructor to use is as follows:

FQuat(FVector Axis, float AngleRad);

For example, to define a twisting rotation:
Quaternions have quaternion addition, quaternion subtraction,
multiplication by a scalar, and division by a scalar defined for them,
amongst other functions. They are extremely useful to rotate things at
arbitrary angles, and point objects at one another.

How it works…
Quaterions are a bit strange, but using them is quite simple. If v is the axis around which to

rotate, and is the magnitude of the angle of rotation, then we get the following equations
for the components of a quaternion:

http://gdcvault.com/play/1017653/Math-for-Game-Programmers-Understanding
http://gdcvault.com/play/1017653/Math-for-Game-Programmers-Understanding

Working with UE4 APIs

398

So, for example, rotation about by an angle of will have the following
quaternion components:

Three of the four components of the quaternion (x, y, and z) define the axis around which to
rotate (scaled by the sine of half the angle of rotation), while the fourth component (w) has
only the cosine of half the angle to rotate with.

There's more…
Quaternions, being themselves vectors, can be rotated. Simply extract the (x, y, z) components
of the quaternion, normalize, and then rotate that vector. Construct a new quaternion from
that new unit vector with the desired angle of rotation.

Multiplying quaternions together represents a series of rotations that happen subsequently.
For example, rotation of 45º about the X axis, followed by a rotation of 45º about the Y axis will
be composed by the following:

FQuat(FVector(1, 0, 0), PI/4.f) *
FQuat(FVector(0, 1, 0), PI/4.f);

Core/Math API – Rotation using
FRotationMatrix to have one object face
another
FRotationMatrix offers matrix construction using a series of ::Make* routines. They are
easy to use and useful to get one object to face another. Say you have two objects, one of
which is following the other. We want the rotation of the follower to always be facing what it is
following. The construction methods of FRotationMatrix make this easy to do.

Chapter 12

399

Getting ready
Have two actors in a scene, one of which should face the other.

How to do it…
1. In the follower's Tick() method, look into the available constructors under the

FRotationMatrix class. Available are a bunch of constructors that will let you
specify a rotation for an object (from stock position) by reorienting one or more of the
X, Y, Z axes, named with the FRotationMatrix::Make*() pattern.

2. Assuming you have a default stock orientation for your actor (with Forward facing
down the +X axis, and up facing up the +Z axis), find the vector from the follower to
the object he is following, as shown in this piece of code:

FVector toFollow = target->GetActorLocation() -
GetActorLocation();
FMatrix rotationMatrix = FRotationMatrix::MakeFromXZ(
toTarget, GetActorUpVector());
SetActorRotation(rotationMatrix.Rotator());

How it works…
Getting one object to look at another, with a desired up vector, can be done by calling the
correct function, depending on your object's stock orientation. Usually, you want to reorient
the X axis (Forward), while specifying either the Y axis (Right) or Z axis (Up) vectors (FRotatio
nMatrix::MakeFromXY()). For example, to make an actor look along a lookAlong vector,
with its right side facing right, we'd construct and set FRotationMatrix for it as follows:

FRotationMatrix rotationMatrix = FRotationMatrix::MakeFromXY(
lookAlong, right);
actor->SetActorRotation(rotationMatrix.Rotator());

Working with UE4 APIs

400

Landscape API – Landscape generation with
Perlin noise

If you use ALandscape in your scene, you may want to program the heights on it using code
instead of manually brushing it in. To access the ALandscape object and its functions inside
of your code, you must compile and link in the Landscape and LandscapeEditor APIs.

Getting ready
Generating a landscape is not terribly challenging. You need to link in both the Landscape
and LandscapeEditor APIs, and also have a programmatic way to set the height values
across the map. In this recipe, we'll show how to use the Perlin noise for this.

Previously, you may have seen Perlin noise used for coloration, but that is not all it is good
for. It is excellent for terrain heights as well. You can sum multiple Perlin noise values to get
beautiful fractal noise. It is worth a brief study of Perlin noise to understand how to get good
outputs.

How to do it…
1. Retrieve the Perlin noise module from http://webstaff.itn.liu.se/~stegu/

aqsis/aqsis-newnoise/. The two files you'll need are noise1234.h and
noise1234.cpp (or you can select another pair of noise generation files from this
repository if you wish). Link these files into your project and be sure to #include
YourPrecompiledHeader.h into noise1234.cpp.

2. Link in the Landscape and LandscapeEditor APIs in your Project.Build.cs
file.

http://webstaff.itn.liu.se/~stegu/aqsis/aqsis-newnoise/
http://webstaff.itn.liu.se/~stegu/aqsis/aqsis-newnoise/

Chapter 12

401

3. Construct an interface using UMG that allows you to click a Generate button to call
a C++ function that will ultimately populate the current Landscape with Perlin noise
values. You can do this as follows:

 � Right-click on your Content Browser and select User Interface | Widget
Blueprint.

 � Populate Widget Blueprint with a single button that kicks off a single Gen()
function. The Gen() function can be attached to your Chapter12GameMode
derived class object as that is easy to retrieve from the engine. The Gen()
function must be BlueprintCallable UFUNCTION(). (See the Creating
a UFUNCTION section in Chapter 2, Creating Classes, for details on how to
do so.)

 � Be sure to display your UI by creating it and adding it to the viewport in one
of your booting Blueprints; for example, in your HUD's BeginPlay event.

4. Create a Landscape using the UE4 Editor. The landscape will be assumed to stay on
screen. We will only modify its values using code.

Working with UE4 APIs

402

5. Inside your map generation routine, modify your ALandscape object using code that
does the following:

 � Find the Landscape object in the level by searching through all objects
in the Level. We do this using a C++ function that returns TArray of all
Landscape instances in the level:
TArray<ALandscape*> AChapter12GameMode::GetLandscapes()
{
 TArray<ALandscape*> landscapes;
 ULevel *level = GetLevel();
 for(int i = 0; i < level->Actors.Num(); i++)
 if(ALandscape* land = Cast<ALandscape>(level->Actors[i])
)
 landscapes.Push(land);
 return landscapes;
}

 � Initialize the world's ULandscapeInfo objects for ALandscape editing
using the very important line, which is as follows:
ULandscapeInfo::RecreateLandscapeInfo(GetWorld(), 1);

The preceding line of code is extremely important. Without it, the
ULandscapeInfo objects will not be initialized and your code will not work.
Surprisingly, this is a static member function of the ULandscapeInfo class,
and so it initializes all ULandscapeInfo objects within the level.

 � Get extents of your ALandscape object so that we can compute the number
of height values we will need to generate.

 � Creates a set of height values to replace original values.

 � Calls LandscapeEditorUtils::SetHeightmapData(landscape,
data); to park new landscape height values into your ALandscape
object.

For example, use the following code:

// a) REQUIRED STEP: Call static function
// ULandscapeInfo::RecreateLandscapeInfo().
// What this does is populate the Landscape object with
// data values so you don't get nulls for your
// ULandscapeInfo objects on retrieval.
ULandscapeInfo::RecreateLandscapeInfo(GetWorld(), 1);

// b) Assuming landscape is your landscape object pointer,

Chapter 12

403

// get extents of landscape, to compute # height values
FIntRect landscapeBounds = landscape->GetBoundingRect();

// c) Create height values.
// LandscapeEditorUtils::SetHeightmapData() adds one to
// each dimension because the boundary edges may be used.
int32 numHeights = (rect.Width()+1)*(rect.Height()+1);
TArray<uint16> Data;
Data.Init(0, numHeights);
for(int i = 0; i < Data.Num(); i++) {
 float nx = (i % cols) / cols; // normalized x value
 float ny = (i / cols) / rows; // normalized y value
 Data[i] = PerlinNoise2D(nx, ny, 16, 4, 4);
}

// d) Set values in with call:
LandscapeEditorUtils::SetHeightmapData(landscape, Data);

The initial values of heightmap will all be 32768 (SHRT_MAX (or
USHRT_MAX/2+1)) when the map is completely flat. This is because the
map uses unsigned shorts (uint16) for its values, making it incapable of
taking on negative values. For the map to dip below z=0, the programmers
made the default value half of the maximum value of heightmap.

How it works…
The Perlin noise function is used to generate a height value for (x, y) coordinate pairs. The
2D version of Perlin noise is used so that we can get a Perlin noise value based on 2-space
spatial coordinates.

There's more…
You can play with the Perlin noise functions with the spatial coordinates of the map, and
assign the heights of the maps to different combinations of the Perlin noise function. You will
want to use a sum of multiple octaves of the Perlin noise function to get more detail into the
landscape.

The PerlinNoise2D generation function looks as follows:

uint16 AChapter12GameMode::PerlinNoise2D(float x, float y,
 float amp, int32 octaves, int32 px, int32 py)
{
 float noise = 0.f;
 for(int octave = 1; octave < octaves; octave *= 2)

Working with UE4 APIs

404

 {
 // Add in fractions of faster varying noise at lower
 // amplitudes for higher octaves. Assuming x is normalized,
 // WHEN octave==px you get full period. Higher frequencies
 // will go out and also meet period.
 noise += Noise1234::pnoise(x*px*octave, y*py*octave, px, py)
 / octave;
 }
 return USHRT_MAX/2.f + amp*noise;
}

The PerlinNoise2D function accounts for the fact that the mid-level value of the function
(sea level or flat land) should have a value of SHRT_MAX (32768).

Foliage API – Adding trees procedurally to
your level

The Foliage API is a great way to populate your level with trees using code. If you do it this
way, then you can get some good results without having to manually produce a natural looking
randomness by hand.

We will correlate the placement of foliage with the Perlin noise value so that the chance to
place a tree at a given location is higher when the Perlin noise values are higher.

Getting ready
Before using the code interface to the Foliage API, you should try the in-editor feature to
familiarize yourself with the feature. After that, we will discuss using the code interface to
place the foliage in the level.

Important! Keep in mind that the material for a FoliageType object must
have the Used with Instanced Static Meshes checkbox checked in its panel. If
you do not do so, then the material cannot be used to shade a foliage material.

Be sure to check the Used with Instanced Static Meshes checkbox for your
materials that you use on your FoliageType, otherwise your Foliage will
appear gray.

Chapter 12

405

How to do it…

Manually

1. From the Modes panel, select the picture of a small growing plant with leaves .

2. Click on the + Add Foliage Type drop-down menu and select to construct a new
Foliage object.

3. Save the Foliage object by whatever name you wish.

4. Double-click to edit your new Foliage object. Select Mesh from your project,
preferably a tree-shaped object, to paint foliage into the landscape with.

5. Adjust Paint Brush Size and Paint Density to your liking. Left click to start painting in
foliage.

6. Shift + click to erase foliage that you've put down. The Erase density value tells you
how much foliage to leave behind when erasing.

Procedurally
If you would like the engine to distribute the foliage in the level for you, you have a few steps to
cover before being able to do so from within the editor. These steps are as follows:

1. Go to the Content Browser and right-click to create a few FoliageType objects to
distribute procedurally in the level.

2. Click Edit | Editor Preferences.

3. Click the Experimental tab.

4. Enable the Procedural Foliage checkbox. This allows you access to the Procedural
Foliage classes from within the Editor.

5. Go back to Content Browser, right-click and create Miscellaneous | Procedural
Foliage Spawner.

6. Double-click to open your Procedural Foliage Spawner and select-in the
FoliageTypes that you created in step 1.

7. Drag your Procedural Foliage Spawner onto the level and size it such that it contains
the area where you want your procedural foliage laid out.

8. From the Brushes menu, drag on a few Procedural Foliage Blocker volumes. Place
a few of these inside the Procedural Foliage Spawner volume to block foliage from
appearing in these areas.

Working with UE4 APIs

406

9. Open the menus downwards and click SIMULATE. The Procedural Foliage Spawner
should fill with foliage.

10. Experiment with the settings to get the foliage distributions that you like.

See also
 f The preceding recipe generates foliage prior to gameplay start. If you're interested in

procedural foliage spawning at runtime, see the next recipe, Landscape and Foliage
API – Map generation using Landscape and Foliage APIs.

Landscape and Foliage API – Map generation
using Landscape and Foliage APIs

We can use the earlier mentioned landscape generation code to create a landscape, and the
procedural foliage functionality to randomly distribute some foliage on it.

Combining the capabilities of the Landscape API and Foliage API will allow you to procedurally
generate complete maps. In this recipe, we will outline how this is done.

We will programmatically create a landscape and populate it with foliage using code.

Getting ready
To prepare to perform this recipe, we will need a UE4 project with a Generate button to kick
off generation. You can see the Landscape API – Landscape generation with Perlin noise
recipe for an example of how to do this. You simply need to create a small UMG UI widget
that has a Generate button. Connect the OnClick event of your Generate button to a C++
UFUNCTION() inside any C++ global object, such as your Chapter12GameMode object, that
will be used to generate your terrain.

Chapter 12

407

How to do it…
1. Enter a loop that attempts to place N trees, where N is the number of trees to place

randomly, which is specified in the UPROPERTY() of the Chapter12GameMode object.

2. Get random XY coordinates from within a 2D box bounding the landscape object.

3. Get the Perlin noise value @ (x, y). You may use a different Perlin noise
formulation than the one used to determine landscape heights for foliage placement.

4. Generate a random number. If the number generated is within the range
of units of the Perlin noise function there, then place a tree using the
SpawnFoliageInstance function. Otherwise, do not place a tree there.

You should note that we are covering randomness in location using
the underlying randomness in the spot we choose to test for tree
placement. The actual chance to place a tree there depends on the
Perlin noise value there, and whether it is within the range of units of
PerlinTreeValue.
Very dense tree distributions will look like isocontours on the map then.
The width of the isocontours is the range of units.

How it works…
Perlin noise works by generating smooth noise. For each location in an interval, (say [-1, 1]),
there is a smoothly varying Perlin noise value.

Working with UE4 APIs

408

Perlin noise values are sampled on a 2D texture. At each pixel (and even in between), we can
get a very smoothly varying noise value.

Adding octaves (or integer multiples) to some variable that travels in distance across the
Perlin noise function allows us to get jaggy-looking effects; for example, the tufts in clouds or
crags in mountains are gotten by wider-spaced samples, which give faster varying noise.

To get cool-looking Perlin noise outputs, we will simply apply math functions to sampled Perlin
noise values; for example, the sin and cos functions can generate some cool looking marble
effects for you.

Perlin noise becomes periodic, that is, tileable, with the Perlin noise
functions provided by the earlier linked implementation in this recipe.
By default, Perlin noise is not periodic. If you need your Perlin noise to
be periodic, be careful which library function you are calling.

The base Perlin noise function is a deterministic function that returns the same value every
time you call it with the same value.

There's more…
You may also set up sliders inside your Chapter12GameMode object derivative to affect the
foliage and landscape generation, including parameters such as the following:

 f Amplitude of the landscape

 f Density of the foliage

 f Isocontour level for foliage

 f Variance in foliage height or scale

GameplayAbilities API – Triggering an
actor's gameplay abilities with game
controls

The GameplayAbilities API can be used to attach C++ functions to invoke on certain button
pushes, triggering the game unit to exhibit its abilities during play in response to keystroke
events. In this recipe, we will show you how to do that.

Getting ready
Enumerate and describe your game character's abilities. You will need to know what your
character does in response to key events to code in this recipe.

Chapter 12

409

There are several objects that we need to use here; they are as follows:

 f UGameplayAbility class—this is needed to derivate the C++ class instances of the
UGameplayAbility class, one derivative class for each ability.

 � Define what each ability does in .h and .cpp by overriding
available functions, such as UGameplayAbility::Acti
vateAbility, UGameplayAbility::InputPressed,
UGameplayAbility::CheckCost, UGameplayAbility::ApplyCost,
UGameplayAbility::ApplyCooldown, and so on

 f GameplayAbilitiesSet—this is a DataAsset derivative object that contains
a series of enum'd command values, and blueprints of the corresponding
UGameplayAbility derivative classes that define the behavior for that particular
input command. Each GameplayAbility is kicked off by a keystroke or mouse click,
which is set in DefaultInput.ini.

How to do it…
In the following, we'll implement a UGameplayAbility derivative called
UGameplayAbility_Attack for a Warrior class object. We'll attach this gameplay
functionality to input command string Ability1, which we'll activate on the left-mouse
button click.

1. Link the GameplayAbilities API in your ProjectName.Build.cs file.

2. Derive a C++ class from UGameplayAbility. For example, write a C++ UCLASS
UGameplayAbility_Attack.

3. In the very least, you want to override the following:

 � The UGameplayAbility_Attack::CanActivateAbility member
function to indicate when the actor is allowed to invoke the ability.

 � The UGameplayAbility_Attack::CheckCost function to indicate
whether the player can afford to use ability or not. This is extremely
important, because if this returns false, ability invocation should fail.

 � The UGameplayAbility_Attack::ActivateAbility member function
and write the code that the Warrior is to execute when his Attack ability
is activated.

 � The UGameplayAbility_Attack::InputPressed member function and
to respond to the key input event assigned to the ability.

4. Derive a Blueprint class from your UGameplayAbility_Attack object inside the
UE4 editor.

Working with UE4 APIs

410

5. Inside the editor, navigate to Content Browser and create a
GameplayAbilitiesSet object by:

 � Right clicking on Content Browser and selecting Miscellaneous | Data
Asset

 � In the dialog box that follows, select GameplayAbilitySet for Data Asset
Class

In fact, the GameplayAbilitySet object is a UDataAsset derivative.
It is located in GameplayAbilitySet.h and contains a single member
function, GameplayAbilitySet::GiveAbilities(), which I strongly
recommend you not to use for reasons listed in a later step.

6. Name your GameplayAbilitySet data asset something related to the
Warrior object so we know to select it into the Warrior class (for example,
WarriorGameplayAbilitySet).

7. Double-click to open and edit the new WarriorAbilitySet Data Asset. Stack in
a list of GameplayAbility class derivative Blueprints by clicking + on the TArray
object inside of it. Your UGameplayAbility_Attack object must appear in the
dropdown.

8. Add UPROPERTY UGameplayAbilitySet* gameplayAbilitySet member to
your Warrior class. Compile, run, and select-in WarriorAbilitySet as it sits
in Content Browser (created in steps 5 to 7) of the abilities that this Warrior is
capable of.

9. Ensure that your Actor class derivative also derives from the
UAbilitySystemInterface interface. This is extremely important so
that calls to (Cast<IAbilitySystemInterface>(yourActor))-
>GetAbilitySystemComponent() succeed.

Chapter 12

411

10. Sometime after the construction of your actor, call gameplayAbilitySet-
>GiveAbilities(abilitySystemComponent); or enter a loop, as
shown in the following step where you invoke abilitySystemComponent-
>GiveAbility() for each ability listed in your gameplayAbilitySet.

11. Write an override for AWarrior::SetupPlayerInputComponent(
UInputComponent* Input) to connect the input controller to the Warrior's
GameplayAbility activations. After doing so, iterate over each GameplayAbility listed in
your GameplayAbilitySet's Abilities group.

Do not use the GameplayAbilitySet::GiveAbilities()
member function because it doesn't give you access to the set of
FGameplayAbilitySpecHandle objects that you actually need to
later bind and invoke the ability to an input component.

void AWarrior::SetupPlayerInputComponent(UInputComponent* Input)
{
 Super::SetupPlayerInputComponent(Input);
 // Connect the class's AbilitySystemComponent
 // to the actor's input component
 AbilitySystemComponent->BindToInputComponent(Input);

 // Go thru each BindInfo in the gameplayAbilitySet.
 // Give & try and activate each on the AbilitySystemComponent.
 for(const FGameplayAbilityBindInfo& BindInfo :
 gameplayAbilitySet->Abilities)
 {
 // BindInfo has 2 members:
 // .Command (enum value)
 // .GameplayAbilityClass (UClass of a UGameplayAbility)
 if(!BindInfo.GameplayAbilityClass)
 {
 Error(FS("GameplayAbilityClass %d not set",
 (int32)BindInfo.Command));
 continue;
 }

 FGameplayAbilitySpec spec(
 // Gets you an instance of the UClass
 BindInfo.GameplayAbilityClass->
 GetDefaultObject<UGameplayAbility>(),
 1, (int32)BindInfo.Command) ;

Working with UE4 APIs

412

 // STORE THE ABILITY HANDLE FOR LATER INVOKATION
 // OF THE ABILITY
 FGameplayAbilitySpecHandle abilityHandle =
 AbilitySystemComponent->GiveAbility(spec);

 // The integer id that invokes the ability
 // (ith value in enum listing)
 int32 AbilityID = (int32)BindInfo.Command;

 // CONSTRUCT the inputBinds object, which will
 // allow us to wire-up an input event to the
 // InputPressed() / InputReleased() events of
 // the GameplayAbility.
 FGameplayAbiliyInputBinds inputBinds(
 // These are supposed to be unique strings that define
 // what kicks off the ability for the actor instance.
 // Using strings of the format
 // "ConfirmTargetting_Player0_AbilityClass"
 FS("ConfirmTargetting_%s_%s", *GetName(),
 *BindInfo.GameplayAbilityClass->GetName()),
 FS("CancelTargetting_%s_%s", *GetName(),
 *BindInfo.GameplayAbilityClass->GetName()),
 "EGameplayAbilityInputBinds", // The name of the ENUM that
 // has the abilities listing (GameplayAbilitySet.h).
 AbilityID, AbilityID
);
 // MUST BIND EACH ABILITY TO THE INPUTCOMPONENT, OTHERWISE
 // THE ABILITY CANNOT "HEAR" INPUT EVENTS.
 // Enables triggering of InputPressed() / InputReleased()
 // events, which you can in-turn use to call
 // TryActivateAbility() if you so choose.
 AbilitySystemComponent->BindAbilityActivationToInputComponent(
 Input, inputBinds
);

 // Test-kicks the ability to active state.
 // You can try invoking this manually via your
 // own hookups to keypresses in this Warrior class
 // TryActivateAbility() calls ActivateAbility() if
 // the ability is indeed invokable at this time according
 // to rules internal to the Ability's class (such as cooldown
 // is ready and cost is met)
 AbilitySystemComponent->TryActivateAbility(
 abilityHandle, 1);
 }
}

Chapter 12

413

How it works…
You must subclass and link in a set of UGameplayAbility objects to your actor's
UAbilitySystemComponent object through a series of calls to UAbilitySystemCompo
nent::GiveAbility(spec) with appropriately constructed FGameplayAbilitySpec
objects. What this does is it decks out your actor with this bunch of GameplayAbilities.
The functionality of each UGameplayAbility, its cost, cooldown, and activation is all neatly
contained within the UGameplayAbility class derivative that you will construct.

There's more…
You'll want to carefully code in a bunch of the other functions that are available in the
GameplayAbility.h header file, including implementations for the following:

 f SendGameplayEvent: This is a function to notify GameplayAbility that some general
gameplay event has happened.

 f CancelAbility: This is a function to stop an ability's usage midway through, and
giving the ability an interrupted state.

 f Keep in mind that there are a bunch of existing UPROPERTY near the bottom of the
UGameplayAbility class declaration that either activate or cancel the ability upon
addition or removal of certain GameplayTags. See the following GameplayTags
API – Attaching GameplayTags to an actor recipe for more details.

 f A bunch more! Explore the API and implement those functions you find to be useful in
your code.

See also
 f The GameplayAbilities API is a rich and nicely interwoven series of objects and

functions. Really explore GameplayEffects, GameplayTags and GameplayTasks
and how they integrate with the UGameplayAbility class to fully explore the
functionality the library has to offer.

GameplayAbilities API – Implementing stats
with UAttributeSet

The GameplayAbilities API allows you to associate a set of attributes, that is,
UAttributeSet, to an Actor. UAttributeSet describes properties appropriate for that
Actor's in-game attributes, such as Hp, Mana, Speed, Armor, AttackDamage, and so on.
You can either define a single game-wide set of attributes common to all Actors, or several
different sets of attributes appropriate for the different classes of actors.

Working with UE4 APIs

414

Getting ready
AbilitySystemComponent is the first thing you will need to add to your actors to
equip them to use GameAbilities API and UAttributeSets. To define your custom
UAttributeSet, you will simply derive from the UAttributeSet base class and extend the
base class with your own series of UPROPERTY members. After that, you must register your
custom AttributeSet with your Actor class' AbilitySystemComponent.

How to do it…
1. Link to the GameplayAbilities API in your ProjectName.Build.cs file.

2. In its own file, derive from the UAttributeSet class and deck the class out with
a set of UPROPERTY that you want each Actor to have in their property set. For
example, you might want to declare your UAttributeSet derivate class similar to
the following piece of code:
#include "Runtime/GameplayAbilities/Public/AttributeSet.h"
#include "GameUnitAttributeSet.generated.h"

UCLASS(Blueprintable, BlueprintType)
class CHAPTER12_API UGameUnitAttributeSet : public
UAttributeSet
{
 GENERATED_BODY()
 public:
 UGameUnitAttributeSet(const FObjectInitializer& PCIP);
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 GameUnitAttributes) float Hp;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 GameUnitAttributes) float Mana;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
 GameUnitAttributes) float Speed;
};

If your code is networked, you might want to enable replication
on each of the UPROPERTY with the replicated declaration in the
UPROPERTY macro.

3. Connect GameUnitAttributeSet with your AbilitySystemComponent inside
your Actor class by calling the following code:
AbilitySystemComponent->InitStats(
 UGameUnitAttributeSet::StaticClass(), NULL);

Chapter 12

415

You can put this call somewhere in PostInitializeComponents(), or in code
that is called later than that.

4. Once you have registered UAttributeSet, you can move on with the next recipe
and apply GameplayEffect to some of the elements in the attribute set.

5. Be sure your Actor class object implements IAbilitySystemInterface by
deriving from it. This is extremely important as the UAbilitySet object will attempt
a cast to IAbilitySystemInterface to call GetAbilitySystemComponent()
on it at various places in the code.

How it works…
UAttributeSets simply allow you to enumerate and define attributes of different actors.
GameplayEffects will be your means to make changes to the attributes of a specific actor.

There's more…
You can code in definitions of GameplayEffects, which will be things that act on the
AbilitySystemComponent's AttributeSet collections. You can also write GameplayTasks
for generic functions that run at specific time or events, or even in response to tag addition
(GameplayTagResponseTable.cpp). You can define GameplayTags to modify
GameplayAbility behavior as well as select and match gameplay units during play.

GameplayAbilities API – Implementing buffs
with GameplayEffect

A buff is just an effect that introduces a temporary, permanent, or recurring change to a game
unit's attributes from its AttributeSet. Buffs can either be good or bad, supplying either
bonuses or penalties. For example, you might have a hex buff that slows a unit to half speed,
an angel wing buff that increases unit speed by 2x, or a cherub buff that recovers 5 hp every
five seconds for three minutes. A GameplayEffect affects an individual gameplay attributes
in the UAttributeSet attached to an AbilitySystemComponent of an Actor.

Getting ready
Brainstorm your game units' effects that happen during the game. Be sure that you've created
an AttributeSet, shown in the previous recipe, with gameplay attributes that you'd like to
affect. Select an effect to implement and follow the succeeding steps with your example.

Working with UE4 APIs

416

You may want to turn LogAbilitySystem to a VeryVerbose
setting by going to the Output Log and typing `, and then Log
LogAbilitySystem All.
This will display much more information from AbilitySystem in the
Output Log, making it easier to see what's going on within the system.

How to do it…
In the following steps, we'll construct a quick GameplayEffect that heals 50 hp to the
selected unit's AttributeSet:

1. Construct your UGameplayEffect class object using the CONSTRUCT_CLASS macro
with the following line of code:
// Create GameplayEffect recovering 50 hp one time only to
unit
CONSTRUCT_CLASS(UGameplayEffect, RecoverHP);

2. Use the AddModifier function to change the Hp field of GameUnitAttributeSet,
as follows:
AddModifier(RecoverHP,
GET_FIELD_CHECKED(UGameUnitAttributeSet, Hp),
EGameplayModOp::Additive, FScalableFloat(50.f));

3. Fill in the other properties of GameplayEffect, including fields such as
DurationPolicy and ChanceToApplyToTarget or any other fields that you'd like
to modify, as follows:
RecoverHP->DurationPolicy =
EGameplayEffectDurationType::HasDuration;
RecoverHP->DurationMagnitude = FScalableFloat(10.f);
RecoverHP->ChanceToApplyToTarget = 1.f;
RecoverHP->Period = .5f;

4. Apply the effect to an AbilitySystemComponent of your choice. The underlying
UAttributeSet will be affected and modified by your call, as shown in the following
piece of code:

FActiveGameplayEffectHandle recoverHpEffectHandle =
AbilitySystemComponent->ApplyGameplayEffectToTarget(
RecoverHP,
AbilitySystemComponent, 1.f);

Chapter 12

417

How it works…
GameplayEffects are simply little objects that effect changes to an actor's AttributeSet.
GameplayEffects can occur once, or repeatedly, in intervals over a Period. You can
program-in effects pretty quickly and the GameplayEffect class creation is intended to be
inline.

There's more…
Once the GameplayEffect is active, you will receive an FActiveGameplayEffectHandle.
You can use this handle to attach a function delegate to run when the effect is over using the
OnRemovedDelegate member of the FActiveGameplayEffectHandle. For example, you
might call:

FActiveGameplayEffectHandle recoverHpEffectHandle =
AbilitySystemComponent->ApplyGameplayEffectToTarget(RecoverHP,
AbilitySystemComponent, 1.f);
if(recoverHpEffectHandle) {
 recoverHpEffectHandle->AddLambda([]() {
 Info("RecoverHp Effect has been removed.");
 });
}

GameplayTags API – Attaching
GameplayTags to an Actor
GameplayTags are just small bits of text that describes states (or buffs) for the player
or attributes that can attach to things such as GameplayAbilities and also to
describe GameplayEffects, as well as states that clear those effects. So, we can have
GameplayTags, such as Healing or Stimmed, that trigger various GameplayAbilities
or GameplayEffects to our liking. We can also search for things via GameplayTags and
attach them to our AbilitySystemComponents if we choose.

Working with UE4 APIs

418

How to do it…
There are several steps to getting GameplayTags to work correctly inside your engine build;
they are as follows:

1. First, we will need to create a Data Table asset to carry all of our game's tag names.
Right-click on Content Browser and select Miscellaneous | Data Table. Select a
table class structure deriving from GameplayTagTableRow.

List all tags available inside your game under that data structure.

2. Add UPROPERTY() TArray<FString> to your GameMode object to list the
names of the TagTableNames that you want to load into the GameplayTags
module manager:
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
GameplayTags)
TArray<FString> GameplayTagTableNames;

3. In your GameMode's PostInitializeComponents function, or later, load the tags
in the tables of your choice using GetGameplayTagsManager:
IGameplayTagsModule::Get().GetGameplayTagsManager().
LoadGameplayTagTable(GameplayTagTableNames);

4. Use your GameplayTags. Inside each of your GameplayAbility objects, you can
modify the blockedness, cancelability, and activation requirements for each
GameplayAbility using tag attachment or removal.

Chapter 12

419

You do have to rebuild your engine in order to get your tags to load within the
editor. The patch to the engine source that is proposed allows you to hook in a
call to IGameplayTagsModule::Get().GetGameplayTagsManager().
LoadGameplayTagTable(GameplayTagTableNames).

To get this call embedded into the editor's startup, you will need to edit the engine's source.

GameplayTasks API – Making things happen
with GameplayTasks
GameplayTasks are used to wrap up some gameplay functionality in a reusable object. All
you have to do to use them is derive from the UGameplayTask base class and override some
of the member functions that you prefer to implement.

Getting ready
Go in the UE4 Editor and navigate to Class Viewer. Ensure that you have linked in the
GameplayTasks API into your ProjectName.Build.cs file and search with Actors Only
tickbox off for the GameplayTask object type.

How to do it…
1. Ensure that you have linked GameplayTasks API into your ProjectName.Build.

cs file.

2. Click on File | Add C++ Class… Choose to derive from GameplayTask. To do so, you
must first tick Show All Classes, and then type gameplaytask into the filter box.
Click on Next, name your C++ class (something like GameplayTask_TaskName is
the convention) then add the class to your project. The example spawns a particle
emitter and is called GameplayTask_CreateParticles.

3. Once your GameplayTask_CreateParticles.h and .cpp pair are
created, navigate to the .h file and declare a static constructor that creates a
GameplayTask_CreateParticles object for you:
// Like a constructor.
UGameplayTask_CreateParticles* UGameplayTask_
CreateParticles::ConstructTask(
 TScriptInterface<IGameplayTaskOwnerInterface> TaskOwner,
 UParticleSystem* particleSystem,
 FVector location)
{
 UGameplayTask_CreateParticles* task =
 NewTask<UGameplayTask_CreateParticles>(TaskOwner);
 // Fill fields

Working with UE4 APIs

420

 if(task)
 {
 task->ParticleSystem = particleSystem;
 task->Location = location;
 }
 return task;
}

4. Override the UGameplayTask_CreateEmitter::Activate() function, which
contains code that runs when GameplayTask is effected, as follows:
void UGameplayTask_CreateEmitter::Activate()
{
 Super::Activate();
 UGameplayStatics::SpawnEmitterAtLocation(GetWorld(),
 ParticleSystem->GetDefaultObject<UParticleSystem>(),
 Location);
}

5. Add GameplayTasksComponent to your Actor class derivative, which is available
in the Components dropdown of the Components tab in the Blueprint editor.

6. Create and add an instance of your GameplayTask inside your Actor derivative
instance using the following code:
UGameplayTask_CreateParticles* task =
 UGameplayTask_CreateParticles::ConstructTask(this,
 particleSystem, FVector(0.f, 0.f, 200.f));
if(GameplayTasksComponent)
{
 GameplayTasksComponent->AddTaskReadyForActivation(*task);
}

7. This code runs anywhere in your Actor class derivative, any time
after GameplayTasksComponent is initialized (any time after
PostInitializeComponents()).

How it works…
GameplayTasks simply register with the GameplayTasksComponent situated inside an
Actor class derivative of your choice. You can activate any number of GameplayTasks at
any time during gameplay to trigger their effects.

GameplayTasks can also kick off GameplayEffects to change attributes of
AbilitySystemsComponents if you wish.

Chapter 12

421

There's more…
You can derive GameplayTasks for any number of events in your game. What's more is that
you can override a few more virtual functions to hook into additional functionality.

HTTP API – Web request
When you're maintaining scoreboards or other such things that require regular HTTP request
access to servers, you can use the HTTP API to perform such web request tasks.

Getting ready
Have a server to which you're allowed to request data via HTTP. You can use a public server of
any type to try out HTTP requests if you'd like.

How to do it…
1. Link to the HTTP API in your ProjectName.Build.cs file.

2. In the file in which you will send your web request, include the HttpModule.h
header file, the HttpManager.h header file, and the HttpRetrySystem.h file, as
shown in the following code snippet:
#include "Runtime/Online/HTTP/Public/HttpManager.h"
#include "Runtime/Online/HTTP/Public/HttpModule.h"
#include "Runtime/Online/HTTP/Public/HttpRetrySystem.h"

3. Construct an IHttpRequest object from FHttpModule using the following code:
TSharedRef<IHttpRequest>
http=FHttpModule::Get().CreateRequest();

FHttpModule is a singleton object. One copy of it exists for the
entire program that you are meant to use for all interactions with the
FHttpModule class.

4. Attach your function to run to the IHttpRequest object's
FHttpRequestCompleteDelegate, which has a signature as follows:
void HttpRequestComplete(FHttpRequestPtr request,
FHttpResponsePtr response, bool success);

Working with UE4 APIs

422

5. The delegate is found inside of the IHttpRequest object as http-
>OnProcessRequestComplete():
FHttpRequestCompleteDelegate& delegate = http-
>OnProcessRequestComplete();

There are a few ways to attach a callback function to the delegate. You can use the
following:

 � A lambda using delegate.BindLambda():
delegate.BindLambda(
 // Anonymous, inlined code function (aka lambda)
 [](FHttpRequestPtr request, FHttpResponsePtr response,
bool
 success) -> void
{
 UE_LOG(LogTemp, Warning, TEXT("Http Response: %d, %s"
),
 request->GetResponse()->GetResponseCode(),
 *request->GetResponse()->GetContentAsString());
});

 � Any UObject's member function:
delegate.BindUObject(this,
&AChapter12GameMode::HttpRequestComplete);

You cannot attach to UFunction directly here as the
.BindUFunction() command requests arguments that
are all UCLASS, USTRUCT or UENUM.

 � Any plain old C++ object's member function using .BindRaw:
PlainObject* plainObject = new PlainObject();
delegate.BindRaw(plainObject, &PlainObject::httpHandler
);
// plainObject cannot be DELETED Until httpHandler gets
called..

You have to ensure that your plainObject refers to a valid object in
memory at the time the HTTP request completes. This means that you
cannot use TAutoPtr on plainObject, because that will deallocate
plainObject at the end of the block in which it is declared, but that
may be before the HTTP request completes.

Chapter 12

423

 � A global C-style static function:

// C-style function for handling the HTTP response:
void httpHandler(FHttpRequestPtr request,
FHttpResponsePtr response, bool success)
{
 Info("static: Http req handled");
}
delegate.BindStatic(&httpHandler);

When using a delegate callback with an object, be sure that the object
instance that you're calling back on lives on at least until the point at
which the HttpResponse arrives back from the server. Processing the
HttpRequest takes real time to run. It is a web request after all—think of
waiting for a web page to load.
You have to be sure that the object instance on which you're calling the
callback function has not deallocated on you between the time of the initial
call and the invocation of your HttpHandler function. The object must still
be in memory when the callback returns after the HTTP request completes.
You cannot simply expect that the HttpResponse function
happens immediately after you attach the callback function and call
ProcessRequest()! Using a reference counted UObject instance to
attach the HttpHandler member function is a good idea to ensure that the
object stays in memory until the HTTP request completes.

6. Specify the URL of the site you'd like to hit:
http->SetURL(TEXT("http://unrealengine.com"));

7. Process the request by calling ProcessRequest:
http->ProcessRequest();

How it works…
The HTTP object is all you need to send off HTTP requests to a server and get HTTP responses.
You can use the HTTP request/response for anything that you wish; for example, submitting
scores to a high scores table or to retrieve text to display in-game from a server.

They are decked out with a URL to visit and a function callback to run when the request
is complete. Finally, they are sent off via FManager. When the web server responds, your
callback is called and the results of your HTTP response can be shown.

Working with UE4 APIs

424

There's more…
You can set additional HTTP request parameters via the following member functions:

 f SetVerb() to change whether you are using the GET or POST method in your
HTTP request

 f SetHeaders() to modify any general header settings you would like

HTTP API – Progress bars
The IHttpRequest object from HTTP API will report HTTP download progress via a callback
on a FHttpRequestProgressDelegate accessible via OnRequestProgress(). The
signature of the function we can attach to the OnRequestProgress() delegate is as
follows:

HandleRequestProgress(FHttpRequestPtr request, int32
sentBytes, int32 receivedBytes)

The three parameters of the function you may write include: the original IHttpRequest
object, the bytes sent, and the bytes received so far. This function gets called back periodically
until the IHttpRequest object completes, which is when the function you attach to
OnProcessRequestComplete() gets called. You can use the values passed to your
HandleRequestProgress function to advance a progress bar that you will create in UMG.

Getting ready
You will need an internet connection to use this recipe. We will be requesting a file from a
public server. You can use a public server or your own private server for your HTTP request if
you'd like.

In this recipe, we will bind a callback function to just the OnRequestProgress() delegate to
display the download progress of a file from a server. Have a project ready where we can write
a piece of code that will perform IHttpRequest, and a nice interface on which to display
percentage progress.

How to do it…
1. Link to the UMG and HTTP APIs in your ProjectName.Build.cs file.

2. Build a small UMG UI with ProgressBar to display your HTTP request's progress.

3. Construct an IHttpRequest object using the following code:
TSharedRef<IHttpRequest> http =
HttpModule::Get().CreateRequest();

Chapter 12

425

4. Provide a callback function to call when the request progresses, which updates a
visual GUI element:
http->OnRequestProgress().BindLambda([](FHttpRequestPtr
request, int32 sentBytes, int32 receivedBytes) -> void
{
 int32 totalLen = request->GetResponse()-
 >GetContentLength();
 float perc = (float)receivedBytes/totalLen;
 if(HttpProgressBar)
 HttpProgressBar->SetPercent(perc);
});

5. Process your request with http->ProcessRequest().

How it works…
The OnRequestProgress() callback gets fired every so often with the bytes sent and bytes
received HTTP progress. We will compute the total percent of the download that is complete by
calculating (float)receivedBytes/totalLen, where totalLen is the HTTP response's
total length in bytes. Using the lambda function we attached to the OnRequestProgress()
delegate callback, we can call the UMG widget's .SetPercent() member function to reflect
the download's progress.

427

Index
A
Action mappings

about 164
adding, from C++ 169, 170
single-button pushes for FPS character,

handling 168, 169
Actor

destroying, Destroy used 85
destroying, SetLifeSpan used 86
destroying, Timer used 85
GameplayTags, attaching to 417-419
instantiating, SpawnActor used 82-84

Actor functionality
implementing, by composition 87-89
implementing, by inheritance 92-94

API listing
reference 390

Application Programming Interface (API) 389
Artificial Intelligence (AI) 353
assets

loading, into components 89-91
attaching 95
Axis mappings

about 164
adding, from C++ 169-171
gamepad directional input, setting up for FPS

character 164-166
keyboard, setting up for FPS

character 164, 165
mouse, setting up for FPS character 164-166
normalized input 166, 167

B
Backlog 36
behavior

following 354-356
Behavior Tree

connecting, to Character 356-359
Decorator 357
Selector 358
Sequence 358
Service 358
Simple Parallel 358
Task nodes 357

Blackboard 357
Block class

about 173
used, for preventing interpenetration 178

Blueprint
creating, from custom UCLASS 51, 52
UInterface functions, implementing 205-207
UInterface methods, exposing to 202-204
UPROPERTY, accessing from 47, 48

Blueprint-defined interface functions
calling, from C++ 211-215

breakpoints 71
broadcast 148
bugs

finding 73
building

creating, that spawns units 129-136

428

C
C++

custom Actor, creating in 78-81
native UInterface functions, calling

 from 189-193
UInterface functions, overriding 198-201

call stacks
using 73, 74

Canvas
about 312
for drawing 312-314

C++ enums
creating, for using in Blueprint 249-255

class
creating 230-232
UInterface implementation,

checking for 185, 186
using, as blueprint variable 226-30

class properties
editing, in different places in editor 256-258

code
stepping through 72

code font and color
modifying, in Visual Studio 8-10

code formatting, in Visual Studio 15, 16
collision settings

about 173
interpenetration, preventing with Block 178
objects, passing through one another with

Ignore 173, 174
objects, picking up with Overlap 175-177

color theme
changing, in Visual Studio 11-14

components
assets, loading into 89-91
attaching, to create hierarchy 95-98

Composite nodes
about 364
Selectors 364
Sequence 364
Simple Parallel 364
using 364

composition
Actor functionality, implementing by 87-89

conditions
Decorators, using for 361, 362

Config File method 322, 323
Construction Script

about 263
implementing 263-266

ConstructObject< > 65, 66
Core / Logging API

custom log category, defining 391, 392
FMessageLog, used for writing messages to

Message Log 393-395
Core / Math API

FRotationMatrix, used for rotation 399
objects, rotating with FQuat 396, 397
objects, rotating with FRotator 395, 396

C++ Profiler 74
C++ project

creating, in Visual Studio 4-7
working 8

C++ UInterface function implementation
creating 208-211

Curiously Recurring Template
Pattern (CRTP) 273

custom Actor Component
creating 99-102
creating, in C++ 78-81

custom context menu entries
creating, for Assets 287-293

custom Details panels
types, inspecting with 306-310

custom Event
creating 150-152

custom log category
defining 391, 392

custom Primitive Component
creating 106-114

custom Scene Component
creating 102-105

custom SWidget/UWidget
creating 343-352

custom UCLASS
Blueprint, creating from 51, 52

429

D
data binding

using, with Unreal Motion Graphics 332-335
Decorators

about 361
creating 362
using, for conditions 361

delegate
about 140
unregistering 143, 144

delegate, associated to UFUNCTION
creating 140-143

delegate, taking input parameters
creating 144-146

Destroy
used, for destroying Actor 85

Details Customization 306

E
Epic 34
event handling

implementing, via virtual functions 137-139
events

creating, for implementing in
 Blueprint 236-239

F
Fantastic Quaternions by Numberphile

reference 396
Feature 34
FMessageLog 393
FObjectFinder

used, for loading assets into
components 89-91

Foliage API
map, generating with 406-408
trees, adding manually to your level 405
trees, adding procedurally to your

level 404-406
FQuat

used, for rotating objects 396, 397

Fresnel effect 384
FRotationMatrix

about 398
used, for rotating objects 398, 399

FRotator
used, for rotating objects 395, 396

function calls
attaching, to Slate Events 328-331

functions
creating 232-235

G
gameplay

implementing, framework used 408-413
GameplayAbilities API

about 408
buffs, implementing with

GameplayEffect 415-417
stats, implementing with

 UAttributeSet 413-415
GameplayTags

attaching, to Actor 417-419
GameplayTags API 417
GameplayTasks API

working with 419, 420
garbage collection

forcing 71
garbage collector 66
glimmer

about 380
controlling 381

graph pin visualizer 300
grok 15

H
HTTP API

about 421
progress bars 424
web request 421-423

430

I
Ignore class

about 173
used, for lettings objects pass through one

another 173, 174
In-Editor method 321, 322
inheritance

Actor functionality, implementing by 92-94
InventoryComponent

creating, for RPG 114-125
Issue Tracker

about 28
using 28-31

K
Kanban 31
Killable interface 194

L
landscape

shading 386-388
Landscape API

about 400
landscape generation, with Perlin

noise 400-403
map, generating with 406-408

leaves
creating, in wind 382, 383

Lerp 235

M
malloc()

about 62
using 62, 63

managed memory
about 65
ConstructObject< >, using 65-67
memory, deallocating 67
NewObject< >, using 65, 66
smart pointers, using 68, 69

map
generating, with Foliage API 406-408
generating, with Landscape API 406-408

Markdown
about 29
reference link 30

Material function 377, 378
Material instances 379, 380
Material Parameter Collection (MPC) 383
Melee Attacker 365, 366
memory management 62
Message Log

messages writing to, FMessageLog
used 393-395

modularity 377
mouse UI input handling [UMG] 171, 172
multicast delegate

creating 148-150
multi-cast delegates

exposing, to Blueprint 240-248

N
native UInterface functions

calling, from C++ 189-193
Navigation Mesh (Nav Mesh)

about 354
constructing 354

new Asset type
creating 283-287

new console commands
creating 294-299

new editor module
creating 266-269

new editor window
creating 280-283

new graph pin visualizer
creating, for Blueprint 300-305

new Menu entries
creating 278, 279

NewObject< >()
using 65, 66

new operator
about 64
using 64

431

new Toolbar buttons
creating 270-278

O
OrbitingMovement Component

creating 125-129
Overlap class

about 173
used, for picking up objects 175-177

P
Particle Emitter 382
payload data

passing, with delegate binding 146, 147
periodic services

using 363, 364
Perlin noise

about 385
landscape, generating with 400-403

Perlin noise module
reference 400

PIE screen resolution 323
Pitch 396
Play In Editor 319
Profiler

using, for identifying hot spots 74
project management, on GitHub

Issue Tracker, using 28-31
Source Control, obtaining 26-28

project management, on VisualStudio.com
about 31
tasks, managing 31-34

project management, on VisualStudio.com
tasks, constructing 34-37
user stories, constructing 34-37

properties
making, accessible in Blueprint

 editor graph 258-260
responding, to 260-263

Q
quaternions

about 396
multiplying 398
reference 397

R
randomness

adding 385, 386
Raycast 202
Receive Abort AI 361
Receive Execute AI 361
Receive Tick AI 361
reflectance dependent

on viewing angle 384, 385
respawning pickup

creating, for FPS 157-160
RigidBody collision 201
Roll 396
RPG

InventoryComponent, creating for 114-125

S
screen size-aware scaling

creating, for UI 319, 320
Scrum 31
Service node

about 363
Receive Activation AI 363
Receive Deactivation AI 363
Receive Search Start AI 363
Receive Tick AI 363

SetLifeSpan
used, for destroying Actor 86

shader code
via custom node 376

shader parameters
about 379
setting up 379, 380

432

shortcut keys, in Visual Studio
about 17, 18

simple interaction system
implementing, with UInterfaces 216- 223

Slate UI code 273
Slate widgets

adding, to screen 315-318
slot 282
smart pointers

for tracking object 68
TAutoPtr 68
TSharedPtr 68
TWeakPtr 68

Solution 5
Source Control 26
SpawnActor

used, for instantiating Actor 82-84
struct

creating 230-232
using, as blueprint variable 226-230

T
Task nodes

constructing 360
TAutoPtr 68
Themes 11
Time of Day Handler

creating 153-157
Timer

used, for destroying Actor 85
Transient Package 66
trees

adding, to your level 404
TScopedPointer

using, for tracking object 69
TSharedPtr 68
types

inspecting, with custom Details
panels 306-310

U
UCLASS

about 39
Blueprintable 44

BlueprintType 44
Create Blueprint Class… option 44
creating 40-45
deriving, from UObject 40
FStringClassReference 50
specifying, as type of UPROPERTY 49, 50
TSubclassOf 50
using 39

UE4
FString, making from variables 25, 26
installing 19, 20
levels, creating 22, 23
logging, with UE_LOG 23-25
project, setting up 21, 22

UE4 development tools 1, 2
UENUM()

creating 58
UFUNCTION

creating 58-60
UInterface

about 182
creating 182-184
implementing, on an object 184, 185
inheriting, from another 194-197
simple interaction system,

implementing with 216-223
UInterface functions

implementing, in Blueprint 205-207
overriding, in C++ 198-201

UInterface implementation
casting, in native code 186-188
checking for, in class 185, 186

UInterface methods
exposing, to Blueprint from native

 base class 202-204
UI scaling system

about 319
Config File method 322-324
In-Editor method 321, 322

UMG elements in-game sheet
displaying 325-328
hiding 325-328

UMG keyboard UI shortcut keys 172

433

Undead interface 194
unmanaged memory

free() using 62, 63
malloc() using 62, 63
new operator 64, 65

UnrealHeader Tool (UHT) 81
Unreal Motion Graphics (UMG) 312
UObject-derived classes

destroying 55, 56
instantiating 53, 54

UPROPERTY
accessing, from Blueprints 47, 48

UPROPERTY() declaration 70, 71
UPROPERTY listing

reference 47
user-editable UPROPERTY

BlueprintReadWrite 47
Category 47
creating 45, 46
EditAnywhere 46

User Story 34
USTRUCT

creating 56, 57

V
Visual Studio

about 2-4
code font and color, changing 8-10
code, formatting 15, 16
color theme, changing 11-14
extended mouse usage 19
first C++ project, creating 4-7
installing 2-4
shortcut keys 17, 18
URL 2

W
widget appearance

controlling, with styles 336-343
Windows Presentation Framework (WPF) 312
Workboard feature 32
WYSIWYG editor 351

Y
Yaw 396

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: UE4 Development Tools
	Introduction
	Installing Visual Studio
	Creating and building your first C++ project in Visual Studio
	Changing the code font and color in Visual Studio
	Extension – changing the color theme in Visual Studio
	Formatting your code (Autocomplete settings) in Visual Studio
	Shortcut keys in Visual Studio
	Extended mouse usage in Visual Studio
	UE4 – installation
	UE4 – first project
	UE4 – creating your first level
	UE4 – logging with UE_LOG
	UE4 – making an FString from FStrings and other variables
	Project management on GitHub – getting your Source Control
	Project management on GitHub – using the Issue Tracker
	Project management on VisualStudio.com – managing the tasks in your project
	Project management on VisualStudio.com – constructing user stories and tasks

	Chapter 2: Creating Classes
	Introduction
	Making a UCLASS – deriving from UObject
	Creating a user-editable UPROPERTY
	Accessing a UPROPERTY from Blueprints
	Specifying a UCLASS as the type of a UPROPERTY
	Creating a Blueprint from your custom UCLASS
	Instantiating UObject-derived classes (ConstructObject < > & NewObject < >)
	Destroying UObject-derived classes
	Creating a USTRUCT
	Creating a UENUM()
	Creating a UFUNCTION

	Chapter 3: Memory Management and Smart Pointers
	Introduction
	Unmanaged memory – using malloc()/free()
	Unmanaged memory – using new/delete
	Managed memory – using NewObject< > and ConstructObject< >
	Managed memory – deallocating memory
	Managed memory – smart pointers (TSharedPtr, TWeakPtr, TAutoPtr) to track an object
	Using TScopedPointer to track an object
	Unreal's garbage collection system and UPROPERTY()
	Forcing garbage collection
	Breakpoints and stepping through code
	Finding bugs and using call stacks
	Using the Profiler to identify hot spots

	Chapter 4: Actors and Components
	Introduction
	Creating a custom Actor in C++
	Instantiating an Actor using SpawnActor
	Destroying an Actor using Destroy and a Timer
	Destroying an Actor after a delay using SetLifeSpan
	Implementing the Actor functionality by composition
	Loading assets into components using FObjectFinder
	Implementing the Actor functionality by inheritance
	Attaching components to create a hierarchy
	Creating a custom Actor Component
	Creating a custom Scene Component
	Creating a custom Primitive Component
	Creating an InventoryComponent for an RPG
	Creating an OrbitingMovement Component
	Creating a building that spawns units

	Chapter 5: Handling Events and Delegates
	Handling events implemented via virtual functions
	Creating a delegate that is bound to a UFUNCTION
	Unregistering a delegate
	Creating a delegate that takes input parameters
	Passing payload data with a delegate binding
	Creating a multicast delegate
	Creating a custom Event
	Creating a Time of Day handler
	Creating a respawning pickup for an First Person Shooter

	Chapter 6: Input and Collision
	Introduction
	Axis Mappings – keyboard, mouse and gamepad directional input for an FPS character
	Axis Mappings – normalized input
	Action Mappings – one button responses for an FPS character
	Adding Axis and Action Mappings from C++
	Mouse UI input handling
	UMG Keyboard UI shortcut keys
	Collision – letting objects pass through one another using Ignore
	Collision – picking up objects using overlap
	Collision – preventing interpenetration using Block

	Chapter 7: Communication between Classes and Interfaces
	Introduction
	Creating a UInterface
	Implementing a UInterface on an object
	Checking if a class implements a UInterface
	Casting to a UInterface implemented in native code
	Calling native UInterface functions from C++
	Inheriting UInterface from one another
	Overriding UInterface functions in C++
	Exposing UInterface methods to Blueprint from a native base class
	Implementing UInterface functions in Blueprint
	Creating C++ UInterface function implementations that can be overridden
in Blueprint
	Calling Blueprint-defined interface functions from C++
	Implementing a simple interaction system with UInterfaces

	Chapter 8: Integrating C++ and the Unreal Editor
	Introduction
	Using a class or struct as a blueprint variable
	Creating classes or structs that can be subclassed in Blueprint
	Creating functions that can be called in Blueprint
	Creating events that can be implemented in Blueprint
	Exposing multi-cast delegates to Blueprint
	Creating C++ enums that can be used in Blueprint
	Editing class properties in different places in the editor
	Making properties accessible in the Blueprint editor graph
	Responding to property – changed events from the editor
	Implementing a native code "Construction Script"
	Creating a new editor module
	Creating new toolbar buttons
	Creating new menu entries
	Creating a new editor window
	Creating a new Asset type
	Creating custom context menu entries for Assets
	Creating new console commands
	Creating a new graph pin visualizer for Blueprint
	Inspecting types with custom Details panels

	Chapter 9: User Interfaces – UI and UMG
	Introduction
	Drawing using Canvas
	Adding Slate Widgets to the screen
	Creating screen size-aware scaling for the UI
	Displaying and hiding a sheet of UMG elements in-game
	Attaching function calls to Slate events
	Use Data Binding with Unreal Motion Graphics
	Controlling widget appearance with Styles
	Create a custom SWidget/UWidget

	Chapter 10: AI for Controlling NPCs
	Introduction
	Laying down a Navigation Mesh
	Following behavior
	Connecting a Behavior Tree to a Character
	Constructing Task nodes
	Using Decorators for conditions
	Using periodic services
	Using Composite nodes – Selectors, Sequences, and Simple Parallel
	AI for a Melee Attacker

	Chapter 11: Custom Materials and Shaders
	Introduction
	Modifying color using a basic Material
	Modifying position using a Material
	Shader code via Custom node
	The Material function
	Shader parameters and Material instances
	Glimmer
	Leaves and Wind
	Reflectance dependent on the viewing angle
	Randomness – Perlin noise
	Shading a Landscape

	Chapter 12: Working with UE4 APIs
	Introduction
	Core/Logging API – Defining a custom log category
	Core/Logging API – FMessageLog to write messages to the Message Log
	Core/Math API – Rotation using FRotator
	Core/Math API – Rotation using FQuat
	Core/Math API – Rotation using FRotationMatrix to have one object face another
	Landscape API – Landscape generation with Perlin noise
	Foliage API – Adding trees procedurally to your level
	Landscape and Foliage API – Map generation using Landscape and Foliage APIs
	GameplayAbilities API – Triggering an actor's gameplay abilities by game controls
	GameplayAbilities API – Implementing stats with UAttributeSet
	GameplayAbilities API – Implementing buffs with GameplayEffect
	GameplayTags API – Attaching GameplayTags to an Actor
	GameplayTasks API – Making things happen with GameplayTasks
	HTTP API – Web request
	HTTP API – Progress bars

	Index

