
www.it-ebooks.info

http://www.it-ebooks.info/

Blueprints Visual Scripting
for Unreal Engine

Build professional 3D games with Unreal Engine 4's
Visual Scripting system

Brenden Sewell

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Blueprints Visual Scripting for Unreal Engine

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1210715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-601-8

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Brenden Sewell

Reviewers
Faris Ansari

Scott Hafner

Marcin Kamiński

Alankar Pradhan

Matt Sutherlin

Commissioning Editor
Neil Alexander

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Divij Kotian

Technical Editor
Anushree Arun Tendulkar

Copy Editors
Hiral Bhat

Vikrant Phadke

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=ade501b7-0317-f5eb-8fd1-54256cb534ab
http://www.it-ebooks.info/

About the Author

Brenden Sewell is a lead game designer at E-Line Media, and has spent the last 5
years designing and creating games that are both fun to play and have educational or
social impact. He has been building games since 2002, when Neverwinter Nights taught
him an invaluable lesson about the expressive power of game design. In 2010, he
graduated with a degree in cognitive science from Indiana University. Since then, he
has focused on enhancing his own craft of game design while harnessing its power to
do good in the world, and exposing more people to the joy the profession holds.

I would like to thank the following people for contributing to this
book and making it a reality: Steve Swink (@steveswink), Jake
Martin, Demetrius Comes, and Graeme Bayless for providing me the
right mentorship to elevate me in my design practice; Logan Barnett
(@logan_barnett) and David Koontz (@dkoontz) for pushing my
knowledge of scripting to become a more versatile developer; the
Packt Publishing staff and my technical reviewers for helping me
to make this book a reality; the Unreal development community
for being supportive and informative as we all endeavor to master
this technology together; and my supremely supportive girlfriend
Michelle, my parents who made this all possible, and all of my
incredible friends for enriching my life.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Faris Ansari is an IT professional from Pakistan, who has skills and interest in
Unity 3D, Unreal Engine, Cocos2d, the Allegro library, OpenGL, and other game
development environments. He started his career as a game developer and worked
on successful games that generated huge revenues. He also possesses the skills
required for, and takes on new challenges while, working on new technologies,
especially open source technologies.

Faris has reviewed the book Learning NGUI for Unity.

His hobbies consist of playing games, learning new things, and watching movies.
He is very interested in working with fellow coworkers and friends on innovative
ideas. His favorite saying is, "Every professional was once a beginner."

Feel free to contact him and discuss something innovative. He can be reached on
LinkedIn at https://www.linkedin.com/in/farisansari.

I would like to thank my friends and family for their continuous
support and help.

Scott Hafner is a professional game designer with over 10 years of experience in
the video game industry. Over the course of his career, he has worked as a producer,
game designer, and level designer on a range of platforms and genres, including
MMOs, third-person shooters, and RPGs.

I would like to thank my fianceé for her continued encouragement
and support in all that I do!

www.it-ebooks.info

http://www.it-ebooks.info/

Marcin Kamiński is working for CTAdventure as a senior programmer and
has his own company, Digital Hussars. Previously, he worked for Artifex Mundi,
CI Game, and Vivid Games. His main fields of expertise are artificial intelligence
and network programming. For 14 years, he has helped develop great games
for PCs, consoles, and mobiles.

Marcin was also a reviewer of the books Unity iOS Essentials and Unity 2D Game
Development Cookbook.

Alankar Pradhan hails from Mumbai, Maharashtra. He did his schooling from
I.E.S.'s CPV High School. He is an ambitious person who loves interacting with
new people, dancing, kickboxing, traveling, spending leisure time with friends, and
playing games on PCs and mobiles. Games have always been a passion in his life.
More than just playing games, how things worked was his main curiosity. Hence, he
decided to pursue his career in this. Alankar completed his BSc honors in software
development from Sheffield Hallam University, UK. He has done his master's
in video game programming and management (video game director; BAC+5
equivalent) from DSK Supinfogame, where he undertook industry-oriented projects
to increase his skill sets and gave his best to do so. Alankar worked as a game
programming intern at Walt Disney, India. During his internship, he was working
on a live project called Hitout Heroes. His name was added to the credits due to his
noticeable work accomplished. He also interned as a game programmer with DSK
Green Ice Games, and then went on to work as a video game programmer on a game
targeted at PCs and consoles. This game, Death God University (D.G.U), was released
on July 1, 2015. Another project he is working on is The Forsaken Mountains.

Alankar has worked on many small projects in teams as well as individually to
sharpen his own skills in various languages, such as C#, C++, Java, Unreal scripting,
Python, Lua, Groovy/Grails, HTML5/CSS and so on. He is familiar with engines
such as Unity3D, Unreal Development Kit, and Visual Studio and SDKs such as
NetBeans, Eclipse, and Wintermute. In 2013, his dissertation work on Comparison
between Python and Lua in Gaming Industry got published as a book. He has worked
with Packt Publishing previously as a technical reviewer of Creating E-Learning
Games With Unity and Learning Unreal Engine iOS Game Development.

Other than this, Alankar likes to read, listen to music, and write poems and short
stories at times. He has his own website at http://alan.poetrycraze.com, where
he posts his poems. He has also published a book, The Art Of Lost Words, which is
available on Amazon.com.

www.it-ebooks.info

http://www.it-ebooks.info/

His e-mail ID is alankar.pradhan@gmail.com. You can visit his portfolio site
at alankarpradhan.wix.com/my-portfolio or contact him on Facebook at
www.facebook.com/alankar.pradhan.

We are so often caught up in our aim that we forget to appreciate
the journey, especially the people we meet on the way. Appreciation
is a wonderful feeling, and it's way better if we don't overlook it.
I hereby like to take this opportunity to acknowledge the people
who directed me and inspired me in this initiative.

I would like to express my sincere thanks to my parents, who always
instilled and believed in me. I am also thankful to my friends for
their constant support and encouraging words that helped me
reach this level.

Last but not least, I would like to thank all the people who are
directly or indirectly involved in this book and helped me in
some way or another.

Matt Sutherlin has been working in the games industry over the last
decade, where he's served roles ranging from a QA and scripter to an engine
programmer and a technical artist. Most recently, he has had a strong focus on
graphics technology, working on engine renderers, art pipelines, and shaders
for AAA titles such as Heroes of the Storm and Halo 5: Guardians.

I would like to thank my wife, Megan, and parents, Mike and Mary
Lynn, for years of support, patience, and understanding; I wouldn't
be where I am without you. I'd also like to thank Alan Wolfe for
being an unending stream of cool programming tricks and insightful
algorithms and for generally being a really great friend.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

[i]

Table of Contents
Preface v
Chapter 1: Object Interaction with Blueprints 1

Creating a project and the first level 1
Setting a template for a new project 3
Making sense of the project settings 4
Creating the project 4

Adding objects to our level 5
Exploring materials 5

Creating materials 6
Material properties and Blueprint nodes 6
Adding substance to our material 9

Creating our first Blueprint 10
Exploring the Event Graph panel 12
Detecting a hit 13
Swapping a material 14
Improving the Blueprint 16

Adding movement 18
Changing actor mobility and collision 18
Breaking down our goal 20
Storing data with variables 21
Readying direction for calculations 22
Getting relative speed using delta time 22
Translating the existing location 23
Updating location 25

Changing direction 25
Testing moving targets 26

Summary 27

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Enhancing Player Abilities 29
Adding the running functionality by extending a Blueprint 30

Breaking down the Blueprint character movement 30
Customizing control inputs 32
Adding a sprint ability 33

Animating a zoom view 36
Using a timeline to smooth transitions 36
Increasing the projectile's speed 39

Adding sound and particle effects 40
Giving our targets state with branches 40
Triggering sound effects, explosions, and destruction 43

Summary 46
Chapter 3: Creating Screen UI Elements 47

Creating simple UI meters with UMG 47
Drawing shapes with widget Blueprints 48
Customizing the meter's appearance 50
Creating ammo and enemy counters 52
Displaying the HUD 53

Connecting UI values to player variables 55
Creating bindings for health and stamina 55
Making text bindings 57

Tracking the ammo and eliminated targets 59
Reducing the ammo counter 59
Increasing the targets eliminated counter 60

Summary 61
Chapter 4: Creating Constraints and Gameplay Objectives 63

Constraining player actions 64
Draining stamina while sprinting 64
Using looping timers to repeat actions 67
Blocking actions with branches 69
Regenerating stamina 70
Preventing firing actions when out of ammo 71

Creating collectable objects 72
Setting up collection logic 72

Setting a gameplay win condition 76
Displaying a target goal in the HUD 76
Creating a win menu screen 77
Displaying the menu 79
Triggering a win 80

Summary 81

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Making Moving Enemies with AI 83
Setting up the enemy actor to navigate 83

Importing from the marketplace 84
Expanding the play area 84
Making the level traversable with a NavMesh 85
Setting the stage for intelligence with AI assets 86

Creating navigation behavior 88
Setting up patrol points 88
Enabling communication between assets 89
Teaching our AI to walk with the Behavior Tree 92

Making the AI chase the player 95
Giving the enemy sight with Pawn Sensing 95
Adding conditions to the Behavior Tree 97
Creating chasing behavior 99

Summary 102
Chapter 6: Upgrading the AI Enemies 103

Creating an enemy attack 103
Making an attack task 104
Updating the health meter 106

Making enemies hear and investigate sounds 107
Adding hearing to the Behavior Tree 107
Setting up the investigating tasks 108
Interpreting and storing the noise event data 111
Adding noise to the player's actions 113

Making the enemies destructible 115
Saving time by reusing existing Blueprint content 116

Spawning more enemies during gameplay 118
Choosing a spawn point where enemies will appear 118
Managing spawn rates and limits with variables 119
Spawning new enemies in the Level Blueprint 121

Creating enemy wandering behavior 124
Identifying a wander point with a custom task 125
Adding wandering to the Behavior Tree 126

Summary 128
Chapter 7: Tracking Game States and Applying
Finishing Touches 129

Making danger real with player death 129
Setting up a lose screen 130
Creating round-based scaling with saved games 133

Storing game information using a SaveGame object 133

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Storing and loading the saved data when starting the game 134
Increasing the enemy target goal 138
Create a transition screen to be shown between rounds 139
Transitioning to a new round when the current round is won 141

Pausing the game and resetting the save file 143
Creating a pause menu 144
Resuming and resetting the save file 145
Triggering the pause menu 147

Summary 149
Chapter 8: Building and Publishing 151

Optimizing your graphics settings 151
Setting up our game to be played by others 154

Packaging the game into a build 158
Steps for further learning 159

Finish and share as many games as you can 159
Stretch out of your comfort zone 160
Resources for additional learning and support 160

Summary 161
Index 163

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Game engines, such as Unreal Engine 4—as the tools that power the creation of
the commercial games we love to play—are becoming increasingly accessible to
both experienced and novice game developers outside of the traditional studio
environment. Previous versions of Unreal Engine have powered many of the most
popular console and PC games released over the last decade, and the newest version
contains the tools for funneling this power into the hands of as many aspiring
developers as possible. The most transformative of these tools is the Blueprints
Visual Scripting system, which allows people who are not full-time programmers
to create and implement the mechanics, interfaces, and interactions of a game.

Taking a step-by-step approach, this book will guide you through the process of
using the visual nodes that make up Blueprint behavior, and link them together
to create game mechanics, user interfaces, and more. In this process, you will be
learning all the skills you need to get started with developing games in Unreal
Engine 4 using Blueprints.

Starting with a basic first-person shooter template, each chapter will extend the
prototype to create an increasingly complex and robust game experience. You will
progress from creating basic shooting mechanics to gradually more complex systems
that will generate user interface elements and intelligent enemy behavior. By focusing
on universally applicable skills, the expertise you will develop in utilizing Blueprints
can translate to other types of genres. By the time you finish this book, you will have a
fully functional first-person shooter and the skills necessary to expand on the game to
develop an entertaining, memorable experience for your players.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

What this book covers
Chapter 1, Object Interaction with Blueprints, begins the book by covering how to bring
new objects into a level to help build the world in which the game will be set. We
move on to manipulating materials on objects, first through the object editor, and
then by triggering during runtime via Blueprints.

Chapter 2, Enhancing Player Abilities, teaches you how to use Blueprints to generate
new objects during gameplay, and link actions in Blueprints to player control inputs.
You also learn to create Blueprints that allow objects to react to collisions with our
generated projectiles.

Chapter 3, Creating Screen UI Elements, demonstrates setting up a Graphical User
Interface (GUI) that will track the player's health, stamina, ammo, and current
objective. Here, you learn how to set up a basic user interface using Unreal's GUI
editor and how to use Blueprints to link the interface to the gameplay values.

Chapter 4, Creating Constraints and Gameplay Objectives, covers how to constrain the
player's abilities, define the gameplay objectives for a level, and track those objectives
via Blueprints that interact with the GUI elements created in the previous chapter.
We walk through setting up collectible ammo packs that will refill the ammo of the
player's gun, as well as utilizing the level Blueprint to define a win condition for
our game.

Chapter 5, Making Moving Enemies with AI, is a crucial chapter that covers how to
create an enemy zombie AI that will pursue the player around the level. We walk
through setting up a navigation mesh on our level, and see how to use Blueprints
to get enemies to traverse between patrol points.

Chapter 6, Upgrading the AI Enemies, shows how to create a compelling experience
by modifying the zombie AI to have states in order to give the zombies a little more
intelligence. In this chapter, we set up the patrol, searching, and attack states for the
zombies using visual and auditory detection. Additionally, we explore how to make
new enemies appear gradually, as the game is playing.

Chapter 7, Tracking Game States and Applying Finishing Touches, adds the finishing
touches necessary to make our game a complete experience, before we finalize
our game for release. In this chapter, we create rounds that will make the game
increasingly difficult, game saves so that the player can save their progress and
return, and player death to make the game's challenge meaningful.

Chapter 8, Building and Publishing, covers how to optimize graphics settings to get our
game performing and looking at its best. Then, we explain how to create a sharable
build of the game, and share some advice on how to continue progressing past the
confines of this book on your way to becoming an accomplished game developer!

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

What you need for this book
This book is an Unreal Engine 4-focused title, which means you only need a copy
of Unreal Engine to get started. Unreal Engine 4 can be downloaded for free from
https://www.unrealengine.com/, and comes with everything you need to follow
along with the book. This book was made using version 4.7.6 of Unreal Engine 4,
and as such, it does not account for features added or removed in subsequent
versions of the software.

Who this book is for
Whether you are brand new to game development or just unexposed to Unreal
Engine 4's Blueprint Visual Scripting system, this is a great place to start learning
how to build complex game mechanics quickly and easily without writing any
text code. No programming experience required!

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"I named the project BlueprintScripting and stored it in the default Unreal
Projects folder for OS X."

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Now
click on the Library tab, find the yellow Install button (as seen in the following
screenshot), and click on it."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/6018OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Object Interaction
with Blueprints

When setting out to develop a game, one of the first steps toward exploring your
idea is to build a prototype. Fortunately, Unreal Engine 4 and Blueprints make it
easier than ever to quickly get the essential gameplay functionality working so that
you can start testing your ideas sooner. To develop some familiarity with the Unreal
editor and Blueprints, we will begin by prototyping simple gameplay mechanics
using some default assets and a couple of Blueprints.

In this chapter, we will cover the following topics:

• Creating a new project and a level
• Placing objects in a level
• Changing an object's material through Blueprints
• Using the Blueprint editor and connecting Blueprints together
• Compiling, saving, and playing our game
• Moving objects in the world with Blueprints

Creating a project and the first level
Before we can begin setting up gameplay elements, we need to create a project that
will contain the content of our game. To access Unreal Engine 4 and begin setting up
our project, we must first open the Epic Games Launcher, which can be downloaded
from the Unreal Engine 4 website (https://www.unrealengine.com/). From the
Epic Games Launcher, click on the tab labeled Unreal Engine. If you are using
Unreal Engine on your computer for the first time, you will see a grayed out-button
labeled Not Installed. Along the left-hand side of the launcher, you will see options.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[2]

The Library tab is the location where you will be able to access the versions of the
engine you have installed and the projects you have built. Now click on the Library
tab, find the yellow Install button (as seen in the following screenshot), and click
on it:

When the engine has finished installing, the Install buttons will change to Launch
buttons, as shown in the following screenshot. Click on any of the Launch buttons
to open the engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Setting a template for a new project
Once you click on Launch, you will be presented with the Unreal Project Browser.
This will by default take you to the Projects tab, which will show you a thumbnail
view of all the projects you have created, as well as any sample projects you might
choose to install. For our purposes, we want to start a new project, so click on the
tab labeled New Project.

From the New Project tab, you can select a template that will give you the initial
assets to use for your game; or you can choose to start a blank project. You will see
two subtabs under the New Project tab, labeled Blueprint and C++. Creating a
project from the content within the Blueprint tab will start your project with a basic
set of behavior built using Blueprints. The C++ tab is used to create projects where
at least some of the core types of behavior of the game are going to be built using the
C++ programming language. Since we quickly want to get a prototype first-person
shooter up and running without having to build the basic controls from scratch, we
should ensure that we have the tab labeled Blueprint selected. Then we choose the
First Person template, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[4]

Making sense of the project settings
The next step is to adjust the project settings to our liking. The three gray boxes
below the template selector allow us to select the class of hardware we are targeting
(desktop/console or mobile/tablet), the graphics scalability, and whether we want to
create our project with or without starter content. Leave these settings at their default
values (Desktop/Console, Maximum Quality, and With Starter Content). Below
these, you will see a folder path field used to designate where you would like to store
your project on your hard drive, and a name field to input the name by which your
project will be known. I named the project BlueprintScripting and stored it in the
default Unreal Projects folder for OS X, as shown in this screenshot:

Creating the project
Now that we have a template selected and the project settings set up the way we like,
we can create the project. To do so, click on the green Create Project button. After the
engine is done with initializing the assets and setting up your project, Unreal Editor
will open Level Editor, where you can create and view levels, place and modify
objects, and test your game as you modify it.

Pressing the Play button, as shown in the following screenshot, along the top of the
toolbar, will allow you to try the default gameplay that comes built into the First
Person template. This includes player movement, shooting a simple projectile, and
using projectiles to apply force to primitive box objects. In play mode, the Play
button will be replaced with a Pause button and a Stop button. You can press the
Pause button to temporarily halt the play session, which can be useful when you
want to explore the properties of an interaction or actor that you just encountered
during gameplay. Pressing the Stop button will end the play session and take you
back to editing mode. Go ahead and try playing the game before we continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Adding objects to our level
Now we want to start adding our own objects to the level. The central panel you
see in Level Editor is known as 3D Viewport. A viewport allows you to see the 3D
content of the game, and it is important that you become familiar with navigating
inside this panel. The viewport can be navigated by moving the camera around
using a combination of mouse buttons and its movement. Holding down the left
mouse button and dragging the mouse pointer inside the viewport moves the camera
view forward and backward, or left and right. Holding down the right mouse button
and moving the mouse allows you to look around by rotating the camera. Finally,
holding down either the middle mouse button or a combination of both the left and
right mouse buttons will allow you to drag the camera up and down.

The simplest kind of object that can be dragged into the game world in Unreal Engine
4 is called an actor. An actor is a basic object with no inherent behavior other than
the ability to be rotated, moved, and scaled, but it can be expanded to include more
complex behavior by attaching components. Our goal will be to create a simple target
actor that will change color when shot with the included gun and projectile. We can
create a simple actor by going to the Modes panel. With the Place tab selected, click
on Basic and then drag the object called Cylinder into the 3D Viewport. This will
create a new cylinder actor and place it in our level. You should see the actor in the 3D
Viewport as well as in the Scene Outliner panel, where it will be named Cylinder
by default. Right-click on this object in the Scene Outliner panel, go to Edit, and then
select Rename. Rename the Cylinder object to CylinderTarget, as shown here:

Exploring materials
Earlier, we set for ourselves the goal of changing the color of the cylinder when it is
hit by a projectile. To do so, we will need to change the actor's material. A material is
an asset that can be added to an actor's mesh (which defines the physical shape of the
actor) to create its look. You can think of a material as paint applied on top of an actor's
mesh or shape. Since an actor's material determines its color, one method of changing
the color of an actor is to replace its material with a material of a different color. To do
this, we will first be creating a material of our own. It will make an actor appear red.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[6]

Creating materials
We can start by creating a new folder inside the FirstPersonBP directory and
calling it Materials. Navigate to the newly created folder and right-click inside
empty space in the content browser, which will generate a new asset creation popup.
From here, select Material to create a new material asset. You will be prompted to
give the new material a name, which I have chosen to call TargetRed.

Material properties and Blueprint nodes
Double-click on TargetRed to open a new editor tab for editing the material, like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

You are now looking at Material Editor, which shares many features and
conventions with Blueprints. The center of this screen is called the grid, and this is
where we will place all the objects that will define the logic of our Blueprints. The
initial object you see in the center of the grid screen, labeled with the name of the
material, is called a node. This node, as seen in the previous screenshot, has a series
of input pins that other material nodes can attach to in order to define its properties.

To give the material a color, we will need to create a node that will give information
about the color to the input labeled Base Color on this node. To do so, right-click on
empty space near the node. A popup will appear, with a search box and a long list
of expandable options. This shows all the available Blueprint node options that we
can add to this Material Blueprint. The search box is context sensitive, so if you start
typing the first few letters of a valid node name, you will see the list below shrink
to include only those nodes that include those letters in the name. The node we are
looking for is called VectorParameter, so we start typing this name in the search
box and click on the VectorParameter result to add that node to our grid:

A vector parameter in the Material Editor allows us to define a color, which we can
then attach to the Base Color input on the tall material definition node. We first need
to give the node a color selection. Double-click on the black square in the middle of
the node to open Color Picker. We want to give our target a bright red color when
it is hit, so either drag the center point in the color wheel to the red section of the
wheel, or fill in the RGB or Hex values manually. When you have selected the shade
of red you want to use, click on OK. You will notice that the black box in your vector
parameter node has now turned red.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[8]

To help ourselves remember what parameter or property of the material our vector
parameter will be defining, we should name it color. You can do this by ensuring
that you have the vector parameter node selected (indicated by a thin yellow
highlight around the node), and then navigating to the Details panel in the editor.
Enter a value for Parameter Name, and the node label will change automatically:

The final step is to link our color vector parameter node to the base material node.
With Blueprints, you can connect two nodes by clicking and dragging one output pin
to another node's input pin. Input pins are located on the left-hand side of a node,
while output pins are always located to the right. The thin line that connects two
nodes that have been connected in this way is called a wire. For our material, we
need to click and drag a wire from the top output pin of the color node to the Base
Color input pin of the material node, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Adding substance to our material
We can optionally add some polish to our material by taking advantage of some of
the other input pins on the material definition node. 3D objects look unrealistic with
flat, single color materials applied, but we can add additional reflectiveness and
depth by setting a value for the materials Metallic and Roughness inputs. To do so,
right click in empty grid space and type scalar into the search box. The node we are
looking for is called ScalarParameter.

Once you have a scalar parameter node, select it, and go to the Details panel. A scalar
parameter takes a single float value (a number with decimal values). Set Default Value
to 0.1, as we want any additive effects to our material to be subtle. We should also
change Parameter Name to Metallic. Finally, we click and drag the output pin from
our Metallic node to the Metallic input pin of the material definition node.

We want to make an additional connection to the Roughness parameter, so
right-click on the Metallic node we just created and select Duplicate. This will
generate a copy of that node, without the wire connection. Select this duplicate
Metallic node and then change the Parameter Name field in the Details panel to
Roughness. We will keep the same default value of 0.1 for this node. Now click and
drag the output pin from the Roughness node to the Roughness input pin of the
Material definition node.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[10]

The final result of our Material Blueprint should look like what is shown in the
following screenshot:

We have now made a shiny red material. It will ensure that our targets will stand out
when they are hit. Click on the Save button in the top-left corner of the editor to save
the asset, and click again on the tab labeled FirstPersonExampleMap to return to
your level.

Creating our first Blueprint
We now have a cylinder in the world, and the material we would like to apply to
the cylinder when shot. The final piece of the interaction will be the game logic
that evaluates that the cylinder has been hit, and then changes the material on the
cylinder to our new red material. In order to create this behavior and add it to our
cylinder, we will have to create a Blueprint. There are multiple ways of creating a
Blueprint, but to save a couple of steps, we can create the Blueprint and directly
attach it to the cylinder we created in a single click. To do so, make sure you have the
CylinderTarget object selected in the Scene Outliner panel, and click on the blue
Blueprint/Add Script button at the top of the Details panel. You will then see a path
select window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

For this project, we will be storing all our Blueprints in the Blueprints folder, inside
the FirstPersonBP folder. Since this is the Blueprint for our CylinderTarget actor,
leaving the name of the Blueprint as the default, CylinderTarget_Blueprint,
is appropriate.

CylinderTarget_Blueprint should now appear in your content browser, inside
the Blueprints folder. Double-click on this Blueprint to open a new editor tab for
the Blueprint. We will now be looking at the Viewport view of our cylinder. From
here, we can manipulate some of the default properties of our actor, or add more
components, each of which can contain their own logic to make the actor more
complex. We will explore components more in the next chapter; for now, we want
to create a simple Blueprint attached to the actor directly. To do so, click on the tab
labeled Event Graph above the Viewport window.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[12]

Exploring the Event Graph panel
The Event Graph panel should look very familiar, as it shares most of the same
visual and functional elements as the Material Editor we used earlier. By default,
the event graph opens with three unlinked event nodes that are currently unused.
An event refers to some action in the game that acts as a trigger for a Blueprint to do
something. Most of the Blueprints you will create follow this structure: Event (when) |
Conditionals (if) | Actions (do). This can be worded as follows: when something happens,
check whether X, Y, and Z are true, and if so, do this sequence of actions. A real-world
example of this might be a Blueprint that determines whether or not I have fired a gun.
The flow is like this: WHEN the trigger is pulled, IF there is ammo left in the gun,
DO fire the gun.

The three event nodes that are present in our graph by default are three of the most
commonly used event triggers. Event Begin Play triggers actions when the player
first begins playing the game. Event Actor Begin Overlap triggers actions when
another actor begins touching or overlapping the space containing the existing actor
controlled by the Blueprint. Event Tick triggers attached actions every time a new
frame of visual content is displayed on the screen during gameplay. The number
of frames that are shown on the screen within a second will vary depending on the
power of the computer running the game, and this will in turn affect how often
Event Tick triggers the actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

We want to trigger a "change material" action on our target every time a projectile
hits it. While we could do this by utilizing the Event Actor Begin Overlap node to
detect when a projectile object was overlapping with the cylinder mesh of our target,
we will simplify things by detecting only when another actor has hit our target actor.
Let's start with a clean slate, by clicking and dragging a selection box over all the
default events and hitting the Delete key on the keyboard to delete them.

Detecting a hit
To create our hit detection event, right-click on empty graph space and type hit in
the search box. The Event Hit node is what we are looking for, so select it when it
appears in the search results. Event Hit triggers actions every time another actor
hits the actor controlled by this Blueprint.

Once you have the Event Hit node on the graph, you will notice that Event Hit
has a number of multicolored output pins originating from it. The first thing to
notice is the white triangle pin that is in the top-right corner of the node. This is the
execution pin, which determines the next action to be taken in a sequence. Linking
the execution pins of different nodes together enables the basic functionality of all
Blueprints. Now that we have the trigger, we need to find an action that will enable
us to change the material of an actor. Click and drag a wire from the execution pin
to empty space to the right of the node.

Dropping a wire into empty space like this will generate a search window, allowing
you to create a node and attach it to the pin you are dragging from in a single
operation. In the search window that appears, make sure that the Context Sensitive
box is checked. This will limit the results in the search window to only those nodes
that can actually be attached to the pin you dragged to generate the search window.
With Context Sensitive checked, type set material in the search box. The node we
want to select is called Set Material (StaticMeshComponent).

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[14]

If you cannot find the node you are searching for in the context-
sensitive search, try unchecking Context Sensitive to find it from the
complete list of node options. Even if the node is not found in the
context-sensitive search, there is still a possibility that the node can be
used in conjunction with the node you are attempting to attach it to.

The actions in the Event Hit node can be set like this:

Swapping a material
Once you have placed the Set Material node, you will notice that it is already
connected via its input execution pin to the Event Hit node's output execution pin.
This Blueprint will now fire the Set Material action whenever the Blueprint's actor
hits another actor. However, we haven't yet set up the material that will be called
when the Set Material action is called. Without setting the material, the action will
fire but not produce any observable effect on the cylinder target.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

To set the material that will be called, click on the drop-down field labeled Select
Asset underneath Material inside the Set Material node. In the asset finder window
that appears, type red in the search box to find the TargetRed material we created
earlier. Clicking on this asset will attach it to the Material field inside the Set
Material node.

We have now done everything we need with this Blueprint to turn the target cylinder
red, but before the Blueprint can be saved, it must be compiled. Compiling is the
process used to convert the developer-friendly Blueprint language into machine
instructions that tell the computer what operations to perform. This is a hands-
off process, so we don't need to concern ourselves with it, except to ensure that
we always compile our Blueprint scripts after we assemble them. To do so, hit the
Compile button in the top-left corner of the editor toolbar, and then click on Save.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[16]

Now that we have set up a basic gameplay interaction, it is wise to test the game to
ensure that everything is happening the way we expect. Click on the Play button,
and a game window will appear directly above the Blueprint Editor. Try both
shooting and running into the CylinderTarget actor you created.

Improving the Blueprint
When we run the game, we see that the cylinder target does change colors upon
being hit by a projectile fired from the player's gun. This is the beginning of a
framework of gameplay that can be used to get enemies to respond to the player's
actions. However, you also might have noticed that the target cylinder changes color
even when the player runs into it directly. Remember that we wanted the cylinder
target to become red only when hit by a player projectile, and not because of any
other object colliding with it. Unforeseen results like this are common whenever
scripting is involved, and the best way to avoid them is to check your work by
playing the game as you construct it as often as possible.

To fix our Blueprint so that the cylinder target changes color only in response to a
player projectile, return to the CylinderTarget_Blueprint tab and look at the Event
Hit node again.

The remaining output pins on the Event Hit node are variables that store data about
the event that can be passed to other nodes. The color of the pins represents the kind
of data variable it passes. Blue pins pass objects, such as actors, whereas red pins
contain a Boolean (true or false) variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

You will learn more about these pin types as we get into more complicated
Blueprints; for now, we only need to concern ourselves with the blue output pin
labeled Other, which contains the data about which other actor performed the
hitting to fire this event. This will be useful in order for us to ensure that the cylinder
target changes color only when hit by a projectile fired from the player, rather than
changing color because of any other actors that might bump into it.

To ensure that we are only triggering in response to a player projectile hit, click
and drag a wire from the Other output pin to empty space. In this search window,
type projectile. You should see some results that look similar to the following
screenshot. The node we are looking for is called Cast To FirstPersonProjectile:

FirstPersonProjectile is a Blueprint included in Unreal Engine 4's First Person
template that controls the behavior of the projectiles that are fired from your gun.
This node uses casting to ensure that the action attached to the execution pin of this
node occurs only if the actor hitting the cylinder target matches the object referenced
by the casting node.

When the node appears, you should already see a blue wire between the Other
output pin of the Event Hit node and the Object pin of the casting node. If not, you
can generate it manually by clicking and dragging from one pin to the other. You
should also remove the connections between the Event Hit and Set Material node
execution pins so that the casting node can be linked between them. Removing a wire
between two pins can be done by holding down the Alt key and clicking on a pin.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[18]

Once you have linked the three nodes, the event graph should look like what is
shown in the following screenshot:

Now compile, save, and click on the play button again to test. This time, you should
notice that the cylinder target retains its default color when you walk up and touch
it, but does turn red when fired upon by your gun.

Adding movement
Now that we have a target that responds to the player shooting, we can add some
sort of challenge to start making our project feel like a game. A simple way to do
this is to add some movement to our target. To accomplish this, we will first have to
declare that our target actor is an object that is intended to move, and then we need
to set up logic within the Blueprint that will manage how it moves. Our goal will be
to make the target cylinder move back and forth across our level.

Changing actor mobility and collision
To allow our target to move, we first have to change the actor's Mobility setting to
Moveable. This allows an object to be manipulated while playing the game. From
the main editor view, select CylinderTarget_Blueprint, and look at the Details
panel. Underneath the Transform values, you can see a toggle for Mobility. Change
this from Static to Moveable, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

By default, basic actors that are placed in the world are set to static.
"Static" means that the object cannot move or be manipulated during
gameplay. Static objects are significantly less resource intensive to
render, and this should be our default choice for non-interactive
objects so that we can maximize frame rates.

It is important to note that the version of the target cylinder that we changed in the
level is just one instance of the Blueprint template for the target cylinders that we
have created. An instance refers to an actual object that has been created, whereas
our Blueprints are descriptions of the kind of features that those instances will have
once they are created.

Any changes we make to a target cylinder already inside the level will be made
for that particular target cylinder only. To make changes to all future targets, we
need to modify the Blueprint directly. To do so, open CylinderTarget_Blueprint
again, either by navigating to the open tab in the editor, or by double-clicking on
the CylinderTarget_Blueprint file in your Blueprints folder.

With the Blueprint open, we want to navigate to the Viewport tab located
underneath the menu toolbar. Along the left side, you will see the Components
panel, which lists all the components that make up this Blueprint. Since we
want to edit a property of the physical object, or mesh, we click on component
StaticMeshComponent. You will see a familiar-looking details panel. It includes the
same properties and categories that we saw when we edited the target cylinder in
the level editing interface. Here, we have to switch the same Mobility toggle, located
beneath the Transform properties, from Static to Movable. This will ensure that all
future targets created from this Blueprint will already be set to be moveable.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[20]

Because we want to target this object with our gun, we also need to ensure that the
target is capable of being collided with so that our bullets don't pass through it. Still
in the details panel, find the category called Collision and look for Collision Presets
in the drop-down menu. There are many other options in this dropdown, and by
choosing the Custom option, you can even set the object's collision interaction with
different object types individually. For our purpose, we just need to ensure that
this drop-down menu is set to BlockAllDynamic, which ensures that the mesh
will register collisions with any other object that also has a collider.

Breaking down our goal
Now that we have made our target moveable, we are ready to set up Blueprints that
tell the cylinder how to move. In order to move an object, we will need three pieces
of data:

• Where the cylinder currently is
• What direction it is supposed to move in
• How fast it is supposed to move in that direction

To understand where the object currently is, we need to get some information about
the world itself. Specifically, what are the coordinates of the cylinder in the world?
The speed and direction are the values we are going to provide to the Blueprint,
though some calculations will be necessary to turn those values into information
that is useful for the Blueprint to move the object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Storing data with variables
The first step is to create the two variables we need: direction and speed. Find the
panel labeled My Blueprint. You should see an empty category marker called
Variables, with a + sign to the right. Click on that + sign to create your first variable.

In the Details panel, you will see a series of fields for editing your new variable. The
four fields that we have to edit are the Variable Name, Variable Type, Editable, and
Default Value. We want our first variable to contain information about the speed of
movement, so name the variable Speed. For Variable Type, we want a variable that
can hold a number that will represent our desired speed, so select Float from the
drop-down menu.

Check the box next to Editable to enable the variable to be changed outside of this
Blueprint. This will be useful for quickly adjusting the value to our liking once we start
testing the moving target in the game. The Default Value category will likely not have
a field, but will feature a message asking you to compile the Blueprint first. Do that,
and a field for entering an initial value will appear. Change the default value to 200.0.

Using the same process, create a second variable called Direction. Choose Vector
for Variable Type. A vector contains information about the X, Y, and Z coordinates,
and in this case, we need to indicate the direction of change we want for the object
movement. Make the direction variable editable and set Default Value to -10.0
for the Y axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[22]

Readying direction for calculations
We will now explore the steps necessary to get the information we need to provide
a movement instruction. It might look intimidating at first, but we will break down
each section and see how each node fits into the larger goal.

The first calculation we need to perform is to take our vector value for direction and
normalize it. Normalizing is a common procedure in vector math that ensures that
the vector is converted to a length of one unit, which will make it compatible with
the rest of our calculations. Fortunately, there is a Blueprint node that takes care of
this for us.

Click on the Direction variable we created in the My Blueprint panel, and drag it
into empty space in the event graph. A small popup will appear, prompting you to
select Get or Set. We want to retrieve the value we set for the direction, so choose
Get to create a node containing the direction variable's value. Click on the output pin
of the Direction node, and drop it into empty graph space. Type normalize in the
search field and select the Normalize node underneath the category labeled Vector.
This will connect your Direction variable to a node that will automatically do the
normalizing calculation for us.

It is good practice to leave comments on the sets of Blueprints as you
create them. Comments can help describe what a particular set of
Blueprints is intended to accomplish, which can be helpful if you are
returning to a Blueprint after some time and need to make sense of your
prior work. To leave a comment on a Blueprint, click and drag a selection
box around the nodes you want to create a comment around to select
them. Then, right-click on one of the selected nodes and select the bottom
option, Create Comment from Selection.

Getting relative speed using delta time
To make our speed value relate to direction, we first need to multiply it by delta time.
Delta time is based on the fact that the time taken between the frames of the gameplay
can differ. By multiplying our speed value to delta seconds, we can ensure that the
speed at which our object moves is the same, regardless of the game's frame rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

To do this, drag the Speed variable onto the event graph and choose Get to create
the speed node. Now, right-click on empty graph space and search for delta. Select
the Get World Delta Seconds option to place the corresponding node. Finally, drag
the output pin from either the delta seconds node or the speed node, and drop it into
empty space. Type an asterisk in the search field (Shift + 8 on most computers) and
select the Float * Float node. Finally, drag the other output pin onto the remaining
input pin of the new multiplication node to multiply these two values, like this:

Translating the existing location
Now that we have a normalized vector direction and a speed value relative to time,
we need to multiply these two values and then add them to the current location.
First, find the StaticMeshComponent component from the Components panel and
drag it onto the event graph. This will create a node from which we can extract any
data contained within the mesh component of the object.

Next, we want to get the mesh's location. One of several ways to handle this is to
look at the transform properties of an object and extract the location from there. Click
and drag the blue output pin into empty space, and then type Get World. Select the
Get World Transform option to create the node. A transform contains information
about the rotation and scale of an object, in addition to its location. This will be useful
because we want to ensure that we preserve the rotation and scale of our target even
as it is moving, and we will need that data to create a transform value from our new
movement information.

Now we want to break down the transform into its component parts so that we can
use just the location in our calculations, while preserving the rotation and scale. Drag
the output pin from the world transform node, and search for the Break Transform
node to add to our graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[24]

Now we need to add the necessary nodes to add speed and direction to the location
information we just extracted. Right-click on empty grid space and search and select
the Make Transform node. This will mark the end of your calculations, so make
sure that it is positioned to the right of all of your other nodes. The Make Transform
node has three inputs, Location, Rotation, and Scale. The Rotation and Scale inputs
should be connected to the rotation and scale output pins on the Break Transform
node we created earlier.

Next, we need to multiply the Direction vector and the Speed float we calculated.
Drag the output node of the Normalize node into empty space, and search using an
asterisk. Select Vector * Float and connect the green input pin to the output of the
float multiplication node that we used with speed.

Our final calculation step is to add Speed and Direction to the current location
we calculated. Click on the yellow vector output pin of the new multiplication
node, and drag it onto empty space. Search using + and select the Vector + Vector
node. Ensure that one input pin of this addition node is connected to the previously
mentioned vector multiplication node, and then connect the other input pin is
connected to the Location output pin of the Break Transform node. Finally, drag the
output pin of our addition node onto the Location input pin of the Make Transform
node. When you are finished, the result should look like what is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Updating location
Now that we have the transform calculated, we can adjust the location of our target
actor by this value. We used delta time to make our speed and direction changes
consistent across frames, and as a consequence, we can simply use the Event Tick node
to fire our move action every frame. Right-click on empty grid space, search for Event
Tick, and place the node somewhere to the right of your Make Transform node.

To move the actor, we will be using the Set Actor Transform node. Drag a wire
from the execution pin of Event Tick to empty grid space, and search for Set Actor
Transform. Place the node, and then connect the Return Value output pin on your
Make Transform node to the New Transform input pin on the Set Actor Transform
node, as shown here:

Changing direction
If you were to compile the Blueprint, save, and play the game now, what would you
expect to see? The target cylinder would move according to our speed and direction
as soon as the game began. However, since we don't have any instructions that cause
the target to stop moving, it would proceed in the same direction for as long as the
game runs, even moving through objects and out of the level we created! To address
this, we need logic that will change the target's direction periodically. This will result
in a target that moves back and forth between two points regularly, much like a
shooting gallery target.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Interaction with Blueprints

[26]

To do this, we have to set up two nodes that will set the direction variable we created
to two different values. Drag the direction variable into empty grid space and choose
the Set option. This will result in a node with X, Y, and Z axis fields. We can use
them to change the value of the direction variable to be different from the initial
default value that we gave it. We want two of these nodes, so drag the direction
variable again into empty space, and then change the Y axis values of the two
nodes to 10.0 and -10.0 respectively.

Now we need a way to switch between these two nodes so that the direction
repeatedly shifts. The FlipFlop node was created for scenarios where we know
we want to alternate between two sets of actions that execute exactly once before
switching each time. This fits our use case here, so right-click on empty grid space
and search for FlipFlop. Select and place the node. Then connect the A execution
pin to one of the direction set node input pins, and the B execution pin to the other.

Finally, we need to ensure that there is some kind of delay between executing the
direction shifts. Otherwise, the direction will change for every frame and the object
will go nowhere. To do so, drag the input execution pin of the FlipFlop node into
empty space and search for the Delay node. This node allows us to set a delay
duration, in seconds, that will postpone the following execution commands by that
length of time. Place this node before the FlipFlop node and give it a duration of
6 seconds. Placing this Delay node between our Set Actor Transform node and
our FlipFlop node will ensure that the direction switch enabled by FlipFlop will
occur only every 6 seconds. The final product should look like what is shown in the
following screenshot. Once you are done, remember to compile and save the Blueprint.

Testing moving targets
Now that we have our Blueprint updated, we can test to ensure that the
CylinderTarget object moves as expected. First, we will have to place the
CylinderTarget object in a position that will allow it to move along the Y axis
without bumping into other objects. The coordinates I used were 410 on the
X axis, 680 on the Y axis, and 180 on the Z axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Note that these values will only work relative to the default layout of the First
Person template map. If you have made adjustments to your own level, then you can
adjust either the speed or the placement of the target in your level, and test until you
find a good patrol spot. Click on Play. If the Blueprint is functioning correctly, you
will see the cylinder move back and forth between two points at a steady rate.

One of the advantages of using Blueprints is that they create a template
of functionality that can be used across multiple objects in a scene. Find
CylinderTarget_Blueprint in the Blueprints folder and drag it directly onto
3D Viewport. You will see another cylinder created, which inherits all of the
functionality of our original cylinder target. In this way, we can rapidly set up
multiple moving targets using the single set of Blueprint logic we created.

Summary
You have built your first prototype using Unreal 4 Blueprints. Congratulations! The
amount of progress you have already made is commendable.

In this chapter, you created a project and an initial level using a first-person shooter
template. You then set up a target object that reacts to the player's gunfire by
changing appearance. Finally, you set up a Blueprint that will allow you to rapidly
create moving targets. The skills you have learned here will serve as a strong
foundation for building more complex interactive behavior in later chapters,
or even entire games of your own making.

You may wish to spend some additional time modifying your prototype to include
a more appealing layout, or feature faster moving targets. As we continue building
our game experience, remember that you always have the opportunity to linger on
a section and experiment with your own functionality or customizations. One of the
greatest benefits of Blueprint's visual scripting is the speed at which you can test
new ideas, and each additional skill that you learn will unlock exponentially more
possibilities for game experiences that you can explore and prototype.

In the next chapter, we will be looking more closely at the player controller that
came with the First Person template. We will extend the existing Blueprint that
governs player movement and shooting with a gun that is tweaked to our liking,
and produces a more interesting visual impact and sound effects.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[29]

Enhancing Player Abilities
In this chapter, we will expand upon the core shooting interaction that we created
in the previous chapter by making modifications to the player character Blueprint.
The player character Blueprint that comes with the First Person Shooter template
initially looks complex, especially when compared to the relatively simple cylinder
target Blueprint that we have already created from scratch. We will be looking into
this Blueprint and breaking it down to see how each of its sections contributes to the
player's experience and allows them to control their character and shoot a gun.

It would be quick and easy to just use an existing asset that works, without spending
time understanding how it is accomplishing its functionality. However, we want to
ensure that we can repair problems as they arise, and extend the functionality of the
player controls to fit our needs better. For this reason, it is always advisable to take
some time to investigate and understand any external asset you might bring into a
project that you are building.

By the end of this chapter, we want to succeed in modifying the player controller, so
that we can add the ability to sprint and destroy the objects we shoot with enjoyable
explosions and sound effects. Along the way to achieving these goals, we will be
covering the following topics:

• Player inputs and controls
• Field of view
• Timelines and branching logic
• Adding sounds and particle effects to an object interaction

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[30]

Adding the running functionality by
extending a Blueprint
We'll begin our exploration of the FirstPersonCharacter Blueprint by adding
simple functionality that will give our players more tactical options for moving
around in the level. At the moment, the player is limited to moving at a single speed.
We can adjust this using Blueprint nodes that listen for key presses, and adjusting the
movement speed attached to the CharacterMovement component of the Blueprint.

Breaking down the Blueprint character
movement
Let's begin by opening the FirstPersonCharacter Blueprint, located in the same
Blueprints folder as CylinderTarget_Blueprint from the last chapter. Find
FirstPersonCharacter in the content browser, and double-click on the Blueprint. You
will open Event Graph and see a large series of Blueprint nodes. The first group of
nodes we will look at is bounded by the event graph comment labeled Stick input,
as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The red trigger nodes are triggered at every frame, and pass the values of TurnRate
and LookUpRate from a controller input. These values are most commonly mapped
to the left/right and up/down axis of an analog stick. Note that there are only two
axis triggers. Detecting a look down or a turn left event is covered by these very
nodes, and is represented as a negative number in the Axis Value that is passed.

Then, the values from the two axis triggers are each multiplied by a variable,
representing the base rate at which the player is intended to be able to turn around
or look up or down. The values are also multiplied by the world delta seconds to
normalize against varying frame rates, in spite of the triggers being called every
frame. The value resulting from multiplying all the three inputs is then passed to
the Add Controller Pitch Input and Add Controller Yaw Input functions. These are
the functions that add translation between the controller input and the effect on the
player camera.

Below the Stick Input group of Blueprint nodes, there is another comment block,
called Mouse Input, and it looks quite similar. Mouse Input converts input from
mouse movements, as opposed to controller axis sticks, into data and then passes
those values directly to the corresponding camera yaw and pitch input functions,
without needing the same kind of calculations that were necessary for analog input.

Now let's look at the group of nodes managing player movement, as shown in
this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[32]

Functionally, these nodes are set up similarly to the stick and mouse input groups.
The axis value is taken from the forward and right movement axis inputs on a
controller or keyboard. Again, these nodes represent backward and left movements
as well, in the form of negative values for the Axis Value outputs. The significant
difference in movement translation is that we require the direction of the actor being
moved, so that the degree of movement can be applied in the correct direction. The
direction is pulled from the Get Actor Vector nodes (both forward and right) and
attached to the World Direction input of the Add Movement Input nodes.

The last movement-related group of nodes to look at is the node group contained
within the comment block labeled Jump. This group is simply made up of a trigger
node that detects the pressing and releasing of the key mapped to jumping, and
applies the junction function from when the button is pressed until it is released.

Customizing control inputs
We have seen how the First Person template has mapped certain player input
actions, such as moving forward or jumping, to Blueprints to produce the behavior
for the actions. In order to create new kinds of behavior, we will have to map new
physical control inputs to additional player actions. To change the input settings for
your game, click on the Edit button in the Unreal Editor menu, and select the Project
Settings option. On the left side of the window that appears, look for the Engine
category and select the Input option.

Inside the Engine category, in the Input Settings menu, you will see two sections
under the Bindings category called Action Mappings and Axis Mappings. Action
Mappings is for key press and mouse click events that trigger player actions.
Axis Mappings is meant for mapping player movements and events that have a
range, such as the W key and S key both affecting the Move Forward action, but on
different ends of the range. Both our Sprint and Zoom functions are simple actions
that are either active or inactive, so we will be adding them as Action Mappings.

Click on the + sign next to Action Mappings twice to add two new action mappings.
Name the first one Sprint, and select the Left Shift key from the drop-down menu to
map that key to your Sprint event. Call the second action Zoom, and map it to Right
Mouse Button. Your Action Mapping inputs should match what is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Adding a sprint ability
Now that we have a basic understanding of how the movement input nodes
take the controller input and apply it to our in-game character, we'll extend that
functionality with a player sprint. We'll be setting up a new series of nodes within
FirstPersonCharacter Blueprint. They will look like what is shown in this
screenshot:

First, we will need to create the trigger that will activate our sprint. Recall that we
previously mapped the action sprint to the Left Shift key. To access that input
trigger, right-click on empty grid space to the left of the other movement functions,
and search for Sprint. Select the InputAction Sprint event to place the node.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[34]

Now we want to modify the movement speed of the player. If you try adding a new
node and searching for speed with context-sensitive search turned on, you will find
only those nodes that are meant for retrieving the maximum speed and checking
whether it is being exceeded. Neither of these will help you set the maximum speed
of the player. To accomplish this, we need to retrieve a value from the character
movement component attached to the FirstPersonCharacter actor. Look at the
Components panel of the editor and select CharacterMovement (Inherited). The
Details panel should change to look like a long series of variables, as seen in the
following screenshot:

The (Inherited) tag at the end of the component name tells us that
the functionality of this component was defined within a C++ script,
rather than a Blueprint. This is common with many components that do
the heavy lifting, with physics calculations related to movement or mesh
definitions. If you are ever interested in seeing the code that drives an
inherited component, you can select the Open (filename).h option from
the right-click menu of the component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

In this list of variables, you can find Max Walk Speed close to the top. This is the
value that determines that maximum speed at which the player can move, and it
should be the target of our Sprint function. However, changing the value in the
Details panel from the default of 600 would modify the player's movement speed
consistently, regardless of whether left Shift was being pressed or not. Instead, we
want to pull this value out of the character movement component and into our
Blueprint's event graph. To do so, click on the component in the Components panel
and drag it onto the event graph, near our Left Shift trigger. This will produce a
Character Movement node, as seen in this screenshot:

Click and drag the output pin from the Character Movement node to empty space,
ensure that you have Context Sensitive checked, and type walk speed. This time,
the Set Max Walk Speed action will appear. Select it to connect the Character
Movement node to the new node setting the maximum walk speed value. Connect
the Pressed output execution pin from the InputAction Sprint trigger to the input
execution pin of the Set Max Walk Speed node to enable pressing left Shift to modify
the maximum movement speed. Finally, change the Max Walk Speed value within
the node from 0.0 to 2200 to provide a nice boost of speed over the default of 600.

We also need to ensure that the player slows down again once the Shift key is
released. To do so, drag the output pin from the Character Movement node again,
and then search for and place another Set Max Walk Speed node. This time, connect
the Released output execution pin of the InputAction Sprint node to the input
execution pin of the new node. Then change the Max Walk Speed value from 0.0 to
the default of 600. To keep up with our good commenting practice, click and make
a selection box around all four of our nodes, right-click, and select Create Comment
from Selection to label the group of nodes Sprint.

Now compile, save, and press Play to test your work. You should notice a significant
boost in speed as long as you press down the left Shift key.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[36]

Animating a zoom view
A core element of modern First-Person Shooters is a variable FOV (also known as
field of view) in the form of a player's ability to look down the scope of a gun to get a
closer view of a target. This is a significant contributor to the feeling of accuracy and
control that modern shooters provide. Let's add a simple form of this functionality to
our prototype.

In an empty section of grid next to your mouse input nodes, right-click, search for an
InputAction Zoom trigger node, and add it. We want to modify the FOV value that
is contained within the FirstPersonCamera component, so we go to the Components
panel and drag FirstPersonCamera out onto the event graph.

Drag the output pin into empty space, search for the Set Field Of View node, and
place it. Lowering the field of view gives the effect of zooming into a narrower area
in the center of the screen. Since the default field of view value is set to 90, for our
zoom, let's set the field of view in the set node to 45, like this:

Click and drag the output execution pin from the right-click trigger node to the input
execution pin of the set node. Compile, save, and click on Play. You will notice that
when you right-click, the FOV will snap to a narrow, zoomed-in view. Any instance
where the main camera snaps from one position to another can be jarring for a
player, so we will have to modify this behavior further.

Using a timeline to smooth transitions
To change the FOV smoothly, we will need to create an animation that shows a
gradual change in the actor over time. To do so, return to the event graph of the
FirstPersonCharacter Blueprint.

Press Alt and click on the Pressed output execution pin of the InputAction Zoom
node to break the connection. Drag a new wire out from Pressed to empty space.
Search for and select Add Timeline to add a timeline node. A timeline will allow us
to change a value (such as the field of view on a camera) over a designated amount
of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

There are two primary ways of accomplishing animations in Unreal
Engine 4. Timelines are perfect for simple value changes, such as the
rotation of a door. For more complex, character-based, or cinematic
animations, you would want to look into Matinee, the engine's built-in
animation system. Matinee and complex animations are out of the scope
of this book, but there are many dedicated learning resources available
for using Matinee. I recommend starting with the Unreal wiki repository
of related tutorials, available at https://wiki.unrealengine.com/
Category:Matinee.

To change the value within the timeline, double-click on the timeline node. This will
open up the Timeline editor. You will see four buttons in the top-left corner of the
editor. Each of these will add a different kind of value to be changed over the course
of the timeline. Because FOV is represented by a numerical value, we will want to
click on the button with the f label (Add Float Track). Doing so will add a timeline
and prompt you to label the value to be changed. Let's label this Field of View. We
will now have to edit the values over different time intervals, as shown here:

To accomplish this, hold down Shift and click close to the 0,0 point on the graph.
You will see the Time and Value fields appear in the top-left part of the graph. This
allows precision tuning of our timeline. Ensure that the time is set to exactly 0.0 and
set the value to 90, our default FOV.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[38]

We want the zoom animation to be quick, so at the top of the Timeline editor, find
the field next to Length and change to value to 0.3 to limit the range of the animation
to 0.3 seconds. Now press Shift and click at the end of the white area of the graph.
Fine-tune the fields to 0.3 for Time and 45 for Value. Note that whole numbers
entered in the Value field will automatically be translated into floating-point values
that are nearly identical, as seen in the following screenshot. The difference is not
large enough to produce any observable effect, so we don't have to concern ourselves
with this translation:

Notice how the red line reflecting the value gradually slopes down from 90 degrees
to 45 degrees. This means that when this animation is called, the player's FOV will
smoothly transition from being zoomed out to zoomed in, rather than a jarring
switch between the two values. This is the advantage of using timelines over
changing the values directly with a set value Blueprint.

Now return to the event graph. We will want to connect our timeline into our set
FOV operation, just like what is shown in this screenshot:

Drag the new Field of View output pin into the Field of View field in the Set node,
overriding your value of 45. Now link the Update output execution pin from the
timeline to the set node. This sets up the functions such that every time the FOV
value is updated, it passes the new value to the set function. Because of our timeline
setup, many values between 90 and 45 will be passed to set, enabling a gradual
transition between the two extremes over 0.3 seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Finally, we want the zooming to end when the right mouse button is released. To do
this, drag the Released pin from the InputAction Zoom node to the Reverse pin of
the Timeline node. This will cause the timeline animation to play in reverse order
when the button is released, ensuring that we have a smooth transition back to our
normal camera view. Also, remember to apply a comment to the node group, so that
you remember what this functionality does if you revisit it later.

Now compile, save, and play to test the transition in and out of your zoom view by
holding down the right mouse button.

Increasing the projectile's speed
Now that we have given the player character a new gameplay option to navigate
the world, our focus will be back to the shooting mechanics. Right now, the shots
fired from the gun on the controller are spheres that slowly arc through the air. We
want to better approximate the fast-moving bullets that we are used to in traditional
shooters.

To change the properties of the projectile, we need to open the Blueprint
called FirstPersonProjectile, located in the same Blueprints folder as
FirstPersonCharacter. Once opened, look at the Components panel and click
on Projectile. This is a projectile movement component that has been added onto
our sphere mesh and collider to define how the sphere will travel once it is created
in the world.

In the Details panel, you will see that Projectile is made up of a long series of values
that can be modified relative to movement. We are interested in only a couple of
these at this time:

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[40]

First, find the Initial Speed and Max Speed fields, currently set to 3000. The
initial speed determines how fast the projectile travels when it is first created at
the tip of our gun, and the maximum speed determines how fast it can reach if an
additional force is applied to it after creation. If we had a rocket, we might wish to
apply acceleration to the rocket after it is launched to signify the thruster engaging.
However, since we are representing a bullet coming from a gun, it makes more sense
to make its initial speed the fastest that the bullet will ever travel at. Adjust both the
initial speed and the maximum speed to twice their original value, 6000.

Additionally, you might have noticed that the current projectile bounces off walls
and objects as if it were a rubber ball. However, we want to mimic a harder and
more forcefully impacting projectile. To remove the bouncing, look for the Projectile
Bounces section in the Details panel and uncheck the box next to Should Bounce.
The other values dictate the way in which the projectile bounces only if Should
Bounce is checked, so there is no need to adjust them.

Now compile, save, and click on Play. You will find that shooting the gun results
in a much further reaching projectile, which behaves more like bullet.

Adding sound and particle effects
Now that we have the player moving and shooting to our liking, let's turn our
attention to the enemy targets. Shooting one of the target cylinders currently results
in it changing its color to red. However, there is nothing that the player can currently
do to destroy a target outright.

We can add more dynamics to our enemy interaction by producing Blueprint logic
that destroys the target if it is shot more than once, while increasing the reward
for the player by producing a satisfying sound and visual effect once the target
is destroyed.

Giving our targets state with branches
Since we want to generate effects that will be caused by changes in state applied
to our target cylinder, we have to ensure that this logic is contained within our
CylinderTarget Blueprint. Open the Blueprint from your Blueprints folder, and
take a look at the node group that triggers off of Event Hit. Right now, when our
projectile hits the cylinder object, these nodes tell it to swap to a red material. To add
the ability to change how the cylinder behaves when it is shot more than once, we
will need to add a check to our Blueprints to count the number of times the cylinder
has been hit, and then trigger a different result, depending on its state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Let's take a look at a setup that could help us handle this scenario:

To create conditional logic with multiple outcomes in Blueprints, we are taking
advantage of the Branch node. This node takes a Boolean variable as an input. Since
Boolean values can only be either true or false, the Branch node can produce only
two outcomes. These two outcomes can be executed by linking additional nodes
to the two output execution pins, representing the true path and the false path.

The first step of creating a branch is to determine what will be represented by your
Boolean, and what will cause the conditional value to change from false to true. In
our case, we want to create a primed state that shows that the target has been hit,
and that it could be destroyed with a second hit. Let's go ahead and create a Primed
Boolean variable.

Recall that variables are defined in the My Blueprint panel. You should already
see our previously defined variables for speed and direction. Click on the + button
to add a new variable. New variables are automatically created as Booleans, so
there is no need to change the variable type in this case. Give it the name Primed
and check the box labeled Editable to make this value easier to modify externally.
Finally, compile and save the Blueprint. Because we do not want our targets to be in
a primed state before they have been hit for the first time, we will leave the default
value of our variable to false (represented by an unchecked box).

Now that you have a Primed Boolean variable, drag it from the My Blueprint panel
to the event graph, and select the Get option that appears on release. This will grab
the true or false state data from the variable and enable us to use it to branch our
Blueprints. Click and drag a red wire from the output pin of the new Primed node
to empty space on the event graph. Search for and add the Branch node.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[42]

Finally, we can add the branch to our Event Hit Blueprint group. Break the
connection between the Cast ToFirstPersonProjectile and Set Material nodes by
holding down the Alt key and clicking on one of the execution pins. Drag the Set
Material node out of the way for a moment, and then connect the output execution
pin to the input execution pin of the Branch node. This Blueprint will now call the
branch evaluation every time the target cylinder is hit.

Now that we have our Branch node set up for activation, we need to provide the
target cylinder with instructions on what to do in each state. The targets we want
to create can be described as being in one of these three states at any time: Default,
Primed, and Destroyed. Since a destroyed actor can't execute any behavior, there
is no way to develop any behavior that happens after the target is destroyed. As a
consequence, we really have to concern ourselves with only the primed and the
pre-primed default states.

Let's handle the default state first. Since this branch dictates what happens to the
cylinder in each state after it has been hit, we want to execute the material change
that we previously attached to the event. If the target has not yet been hit, and it is
now hit for the first time, we have to change the material to red. Additionally, we
will also have to set our Primed Boolean variable to True. In this way, when the
target is hit again, the branch node will route the behavior to the other execution
sequence. The False execution sequence of nodes will look like this:

Drag the Set Material node you moved aside before to the right of the Branch
node, and then connect the False output execution pin of the Branch node to the
Set Material node's input execution pin. Now drag the Primed variable from the
My Blueprint panel to the event graph, and select the Set option. Connect this node
to the Set Material node's output execution pin, and click on the checkbox next to
Primed within the Set node. This will ensure that the next time the target is hit, the
branch evaluates to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Triggering sound effects, explosions, and
destruction
The next step is to define the sequence of actions that will be triggered from the True
path of the Branch node. Earlier, we identified three things we wanted to accomplish
when destroying a target. These were hearing an explosion, seeing an explosion, and
actually removing the target object from the game world. We'll start with the often
undervalued, but always critical, element of satisfying game experiences—sound.

The most basic interaction we can design with sound is to play a .wav sound file at a
location in the game world once, and this will work perfectly for our purpose. Drag
a wire from the True execution node of the Branch node to empty grid space, and
search for the Play Sound at Location node:

Play Sound at Location is a simple node that takes a sound file input and a location
input, and—as you might have guessed—plays the sound at that location. There
are several sound files included in the default assets we brought into this project,
and you can see the list of these by clicking on the drop-down menu underneath
the Sound input. Find and select Explosion01 to set an explosion sound effect.

Now that we have set the sound, we need to determine where the sound will play.
We can use a process similar to the one we used to set the field of view by taking the
mesh component of the cylinder target, extracting its location value, and then linking
that location vector directly to our sound node. However, the Event Hit trigger will
make it easier on us.

One of the many output pins on the Event Hit node is called Hit Location. This
pin contains the location in space where the two objects evaluated by Event Hit
are colliding with one another. The location of our projectile hitting the target is a
perfectly reasonable place to generate the explosion effect, so go ahead and drag
a wire from Hit Location on the Event Hit node to the Location input pin on Play
Sound at Location.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[44]

Compile, save, and play to test Blueprint. Shooting one of the moving targets once
will turn it red. Every hit after that should produce an explosion sound effect.

Now that we have the sound of our explosion working, let's add the visual effect and
destroy the cylinder, using the following setup:

Drag a wire from the output execution node of Play Sound at Location to empty grid
space. Search for and select the Spawn Emitter at Location node.

An emitter is an object that will produce particle effects in a particular
location. Particle effects are collections of small objects that combine to
create the visual effect of objects that are fluid, gaseous, or otherwise
intangible, such as waterfall impacts, explosions, or light beams.

The Spawn Emitter at Location node looks similar to the sound node we are
attaching it to, except for the additional rotation input and the Auto Destroy toggle.
In the drop-down menu beneath Emitter Template, find and select the P_Explosion
effect. This is another asset that came packed with the standard assets we pulled
into our project, and will produce a satisfying-looking explosion wherever its
emitter is attached.

Since we want the explosion to be generated in the same location as the sound
of explosion, we click and drag the same Hit Location pin of the Event Hit node
over into the Location pin of Spawn Emitter at Location. The explosion is a three-
dimensional effect that looks the same from all angles, so we can leave the Rotation
input alone. The toggle for Auto Destroy determines whether or not the emitter
can be triggered more than once. We will be destroying the actor that contains this
emitter once this particle effect is created, so we can leave the toggle box checked.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Finally, we want to remove the target cylinder from the game world after the sound
and visual explosion effects are played. Drag the output execution pin from the
Spawn Emitter at Location node and drop it into empty grid space. To find the
Destroy Actor node, you will need to uncheck the Context Sensitive checkbox
temporarily. Do so and then search for and add the Destroy Actor node. This node
takes only a single target input, which defaults to self. Since this Blueprint contains
the cylinder objects we want to destroy and self is exactly what we want to destroy,
we can leave this node as is.

Extend the comment box around the entire Event Hit sequence of nodes, and update
the text to describe what the new sequence accomplishes. I chose When hit, turn
red and set to primed. If already primed, destroy self. The final result
of this chain of Blueprints should look something like what is shown in the following
screenshot:

Once you have left a useful comment around the Blueprint nodes, compile, save,
and click on Play to test the new interactions. You should see and hear the cylinders
explode once they have been shot two times by the player's gun.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Player Abilities

[46]

Summary
We've now started going down the path to making our game feel satisfying to the
player. We have sound and visual effects, a player character that has most of the
capabilities we would expect from a modern shooter, and targets that react to the
player's interactions. The skills we have covered in the first two chapters can already
be combined to start creating increasingly complex and interesting behavior.

In this chapter, we created some customized player controls to allow sprinting and
zooming in with our gun. In the process, you explored how the movement controller
translates information from a player's inputs into the game experience. You also
opened the door to creating simple animations using timelines. Then you added more
feedback to the player's interaction with the environment by attaching an explosion
effect and sound to the enemy targets, and adding another requirement for them
to be hit by two projectiles.

In the next chapter, we will explore adding a user interface to our game to provide
the player with feedback on their state relative to the world.

www.it-ebooks.info

http://www.it-ebooks.info/

[47]

Creating Screen UI Elements
At the core of any game experience is the method the game designers use to
communicate the goals and rules of the game to the player. One method of doing
this, which is common across all forms of games, is through the use of a Graphical
User Interface (GUI) to display and broadcast important information to the player.
In this chapter, we will be setting up a GUI that will track the player's health,
stamina, and ammo, and we will set up a counter that will display the objectives to
the player. You will learn how to set up a basic user interface using Unreal's GUI
editor and how to use Blueprints to tie that interface to gameplay values. We will
create UI elements using the Unreal Motion Graphics UI Designer (UMG). In the
process, we will cover the following topics:

• Creating UI elements using UMG
 ° Drawing UI elements with the widget designer
 ° Setting up Blueprints to display the GUI

• Creating widget Blueprints to modify the values displayed on the GUI
 ° Creating variables to track the player's state with the UI
 ° Retrieving variables to change the UI's appearance

Creating simple UI meters with UMG
To create an HUD (short for Heads-up Display) that will display the amount of
health, stamina, and ammo the player currently possesses, we will first need to create
variables within the player character that can track these values. To do so, open the
FirstPersonCharacter Blueprint from the Blueprints folder of your project. Within
the Blueprint, we are going to define variables that will represent additional states
that the player and game will care about. Find the Variables category of the My
Blueprint panel in the editor. Click on the + sign to add another variable, and call it
PlayerHealth. With PlayerHealth selected, find the Details panel and change the
variable type to Float.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[48]

Also ensure that the box labeled Editable is checked so that other Blueprints and
objects can manipulate this variable. When a variable is made editable, it will be
shown with a yellow open eye symbol next to its name in the Variables section
of the My Blueprint panel.

Follow the same steps again in order to create a second float variable called
PlayerStamina. Next, create a third variable, but this time select the Integer variable
type, labeled as Int, and call it PlayerCurrentAmmo. Finally, create a second Int
variable called TargetKillCount. The final result of the player variables should
look like what is shown in the following screenshot:

Now, we need to set the default values of our three new variables. We can do so
by clicking on each of these variables and changing the field under Default Value
in the Details panel. I set PlayerCurrentAmmo to 30 and TargetKillCount to 0,
but you can tweak the default values to whatever you think is appropriate for your
desired game experience at any time. PlayerHealth and PlayerStamina should both
be set to 1, as we will be representing those with UI meters that will display the
degree of fullness between 0 and 1. Once you have set the defaults, compile and
save your Blueprint.

Drawing shapes with widget Blueprints
Since the First Person template has no user interface elements by
default, we should create a new folder to store our GUI work. Return to the
FirstPersonExampleMap tab and navigate to the Content Browser panel. Open the
FirstPersonBP folder, right-click in empty space next to the list of folders, and select
the New Folder option. Let's keep things simple and call this folder UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Open the UI folder you just made, and right-click in empty folder space. Go to User
Interface | Widget Blueprint and name the resulting Blueprint HUD. Double-click on
this Blueprint to open the UMG editor. We will be using this tool to define how our
UI is going to look on the screen.

Within the UMG editor, find the panel labeled Palette. Inside it, open the category
named Panel. You will see a series of containers listed that can organize the UI
information. The one we are looking for is called Horizontal Box. Select and drag a
Horizontal Box out of the Palette panel onto the Hierarchy panel, releasing it on top
of the [CanvasPanel] object.

You should now see a horizontal box object nested underneath the [CanvasPanel]
object in the hierarchy. Our immediate goal is to create two labeled player stats bars,
using a combination of vertical boxes, text, and progress bars. The final setup will
look like this:

Two vertical boxes will contain the text and progress bars of our player stats UI.
Look again at the Panel category within the Palette panel, and drag the Vertical Box
object onto the Horizontal Box you created in Hierarchy. Do this a second time,
so that two vertical boxes are aligned underneath the horizontal box.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[50]

To keep things organized, let's apply labels to our objects. Click on the horizontal
box and look at the Details panel on the right side of the editor. Change the top
field, which shows the label of the horizontal box, to say Player Stats.

Using the same method, change the labels of the two vertical boxes underneath
Player Stats to Player Stats Text and Player Stats Bars. Now look under the
Common category of the Palette panel to find the textboxes and progress bars we
need to create the UI. Drag two Text objects onto your Player Stats Text object,
and two Progress Bar objects onto Player Stats Bars.

Customizing the meter's appearance
Now we want to adjust the UI elements and place them on the screen. Select the
Player Stats object from the hierarchy, and look at the central graph panel. You will
see some size controls that allow you to manipulate the size of the selected objects.
Resize the elements so that you can see two sets of the words Text Block and two
tiny gray progress bars stacked on top of each other.

The large rectangular outline in the graph view represents the boundaries of the
screen that the player will see, called the canvas. This is the [CanvasPanel] object
seen at the top level of the hierarchy. Elements positioned toward the top-left corner
of the canvas will appear in the top-left corner of the in-game screen. Since we
want our health and stamina bars to appear in the top-left corner, make sure that
the Player Stats object is still selected and move the entire group close to, but not
touching, the top-left corner of the canvas.

Next, take a look at the Hierarchy panel again. Select the top progress bar
underneath Player Stats bars. In the Details panel, change the top label field to
Health Bar. Then find the Size toggle under the Slot category, and click on the Fill
button to adjust the vertical height of the bar. Finally, find Fill Color and Opacity
under Appearance, and set the color to a shade of red.

Now let's repeat this operation for the player's stamina. Click on the second progress
bar. In the Details panel, click on the Fill button and set the progress bar's label to
Stamina Bar. Find Fill Color and Opacity and adjust the color to something that
looks green. Finally, click on the Player Stats bars vertical box, and then on the Fill
button there as well to scale the horizontal size of both the bars.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

We have our meters looking as we expect, so now let's adjust the text labels. Click on
the first text bar underneath Player Stats Text in the Hierarchy panel. Change its label
to Health, and click on the Align Right button next to Horizontal Align to position
the text against the bar. If you wish to change the font size or style, you can adjust it
from the Font dropdowns and fields underneath the Appearance category. After you
have adjusted Health, click on the second textbox object. Label this one Stamina, click
on the Align Right button, and adjust the font size and style to your liking:

The final bit of adjustment to make is to anchor the meters to a side of the screen.
Since screen sizes and ratios can vary, we want to ensure that our UI elements
remain in the same relative position on the screen. Anchors are used to define a
widget's desired position on a canvas, regardless of the screen size. To establish
an anchor for our meters, select the Player Stats top-level object and then click on
the Anchors dropdown on the Details panel. Select the first option that appears,
which shows a gray rectangle in the top-left corner of the screen. This will anchor
our meters to that corner, ensuring that they will always appear in the top-left
corner, regardless of the resolution or ratio. If you desire to add more nuances to
the anchors, you can click on the expansion arrow to the left of the word Anchors
to expose the precision transform controls. Using this, you will have the ability to
anchor an object to any point on the canvas. You can also accomplish the same effect
by dragging the eight-leaved white flower shape that appears when you set an
anchor at the location where you would like the anchor to be on the canvas.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[52]

You can now adjust the size and position of the Player Stats group of objects within
the Canvas panel to mimic how you want them to appear in your game. The final
product should appear something like this:

Creating ammo and enemy counters
Now that we have a display for the player stats, let's work on our ammo counter
and gameplay goal displays. Both of these will work similarly to our player stats
meters, except that we want to represent their values through text rather than a
continuous meter.

To begin the setup, drag two additional Horizontal Box objects down from Palette to
the [CanvasPanel] object in the Hierarchy panel. Rename these horizontal boxes to
Weapon Stats and Goal Tracker by clicking on the box and changing the top field
in the Details panel that appears.

Now drag two Text objects onto Weapon Stats. Select the first text object, and change
both its name and the Text value under Content to be Ammo :, including the space
and colon. In order to ensure that the size of this display matches the meter text,
change the font size to 24. You can leave all other values untouched, for now.

Next, select the second text object and change its name to Ammo Left. This value is
going to change as ammo is used, but we should give it some default. Since we set
the default of our ammo variable on the player Blueprint to be 30, go ahead and
change the Text value of Ammo Left to 30 as well.

Finally, let's adjust the position of our ammo tracker. Click on the Weapon Stats
object, and then drag the box on the graph panel toward the top-right corner of the
canvas. You will need to resize the box until Ammo : 30 can be fully seen inside the
containing box. The last step will be to set the anchors on the Weapon Stats object in
the top-right corner, which is the third option provided in the Anchors dropdown in
the Details panel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

We can now replicate this procedure for the goal tracker. Drag two additional Text
objects onto the Goal Tracker object in the hierarchy. Change the first text object's
name and Text value to be Targets Eliminated :. Label the second text object
Target Count and set its text value to a default of 0.

Knowing what goal the player is working against is one of the most important pieces
of information that a game can convey. We can reflect this by giving our goal tracker
a larger font size than the rest of the UI. Set the font size of both text objects to 32 to
give the goal tracker more prominence on the screen.

Finally, adjust the size and position of the Goal Tracker object so that all of the text
can be seen and is positioned in the top center of the Canvas panel. Leave a little
additional space to the right side of 0 so that the goal tracker container has room to
display multiple-digit numbers. Then set the anchor point of Goal Tracker to be in
the top center by selecting the second option from the Anchors drop-down menu.

With the UI elements aligned the way we want them, you now need to ensure that
the game will actually know how to display the HUD. To do this, we will need to
revisit the character Blueprint.

Displaying the HUD
Return to the FirstPersonExampleMap tab and Content Browser. Find and open
the FirstPersonCharacter Blueprint in the Blueprints folder. In the event graph,
right-click in empty space, search for EventBeginPlay, and place the trigger.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[54]

In most cases, EventBeginPlay will call the subsequent actions as soon
as the game is started. If the actor the Blueprint is attached to isn't
present when the game starts, it will instead trigger as soon as the actor
is spawned. Since the FirstPersonCharacter player object is present as
soon as the game begins, attaching our Blueprint logic to this trigger will
spawn the HUD immediately.

Drag a wire from the output execution pin of EventBeginPlay, and add a
CreateWidget node. Within the node, you will see a drop-down menu labeled Class.
Here is our opportunity to link in the widget Blueprint we created. Recall that you
called this widget HUD. Sure enough, if you open the drop-down menu, you will see
the HUD option available. Select it to have the player character Blueprint generate
the UI elements you created.

Although we now have a widget generated when the game starts, there is a final
step required to get the widget containing our UI elements to actually appear on the
screen. Drag the Return Value output pin into empty grid space, and add an Add
to Viewport node. This will link the widget information to the display the player
sees when interacting with the game. The output execution pin should automatically
connect with the new node, completing our Blueprint chain. Remember to create
a comment for yourself around the three nodes. The final product should appear
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Now compile, save, and click on Play to test the game. You should see the two
meters representing the player's health and stamina, as well as numerical counters
for ammo and eliminated targets. But as you shoot from your gun, you may notice
one very important problem—none of the UI values change! We will be addressing
this missing component in the next section.

Connecting UI values to player variables
To allow our UI elements to pull data from our player variables, we will need to
revisit the HUD widget Blueprint. Navigate to the FirstPersonExampleMap tab, go
to the Content Browser panel, and open the HUD widget Blueprint in the UI folder.

Creating bindings for health and stamina
In order to get our UI to update with the player stats, we will be creating a binding.
Bindings give the ability to tie functions or properties of a Blueprint to a widget.
Whenever the property or function is updated, that change is reflected in the widget
automatically. So, instead of manually updating both the player health stat and
our widget every time the player takes damage (so that the health meter display
changes), we can tie the meter to a player value—health. Then only one value needs
to be updated.

In the HUD Blueprint editor, find the Hierarchy panel and click on the Health Bar
object nested underneath the Player Stats Bars object. With the Health Bar now
selected, locate the Percent field in the Appearance category of the Details panel.
Click on the Bind button next to Percent, and select Create Binding, as shown in
this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[56]

The HUD editor will switch from Designer View to Graph View. A new function
has been created, allowing us to script a connection between the meter and the
player's health variable. Right-click in empty graph space, and add a Get Player
Character node. Drag a wire from the Return Value output pin of the new node to
empty space, and add the Cast to FirstPersonCharacter node. Break the execution
pin connection between the Get Health Bar Percent and ReturnNode nodes, and
instead connect Get Health Bar Percent to our casting node, as shown here:

This combination of nodes retrieves the player character object
for use within the HUD Blueprint. However, any custom
functions or variables we created for the player character in the
FirstPersonCharacter Blueprint will remain off limits until we
cast the player character object to the FirstPersonCharacter
Blueprint. Remember that casting works to check and ensure
that the input object is the specific object you are casting to. So,
the preceding combination of nodes is essentially saying: if the
player character is a FirstPersonCharacter, allow me to access the
FirstPersonCharacter functions and variables tied to that player character.

Next, drag a wire from the As First Person Character output pin to empty grid space,
and add a Get Player Health node. Finally, connect the Cast to FirstPersonCharacter
node execution pin to ReturnNode, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

That's all we need to do to connect the player health to the UI health bar. We need to
follow the same operation for the player stamina. Click on the large button labeled
Designer to return to the Canvas view, and then select Stamina Bar in the Hierarchy
panel. By following the steps outlined previously for the health bar, create a binding
that connects the FirstPersonCharacter variable Player Stamina to the meter.

Compile and save your work. If you click on Play, you will now notice that the
health and stamina meters are filled in with red and green bars respectively. The
next step is to hook up our bindings for the ammo count and goal counters.

Making text bindings
Click on the Designer button to return to the Canvas interface once more. This time,
we want to select the Ammo Left text object in the hierarchy, under Weapon Stats.
In the Details panel, find the Bind button next to the Text field, and create a new
binding, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[58]

We will follow the same pattern for this binding as we did for health and stamina.
In the Get Ammo Left Text graph view that appears, create a Get Player Character
node, cast it to the FirstPersonCharacter node, and then link the As First Person
Character pin to Get Player Current Ammo. Finally, attach both the cast node and
the Get Player Current Ammo node to ReturnNode. You will notice that when you
attach the Player Current Ammo output pin to the Return Value input pin, a new
To Text (Int) node will be created and linked automatically. This is because the
Unreal Engine knows that for you to display a numerical value as text on the screen,
it first needs to convert the number into a text format that the widget knows how to
display. The conversion node will be hooked up already, so there is no need to make
further modifications:

The final binding to create is for our goal tracker target count. Return to the Designer
view and select the Target Count object in the hierarchy under Goal Tracker. Click
on the Bind button next to the Text field in the Display panel. By following the
preceding steps, create a Blueprint chain that grabs the player character, casts it to
FirstPersonCharacter, and connects the Target Kill Count variable to the casting
and return nodes. As with the ammo count, the conversion to a text node will be
automatically generated and connected for you. The final result should look like
what is shown in the following screenshot:

We've now successfully bound all our UI elements to player variables. Now is a good
time to compile and save our work. Because of our bindings, the UI will now do its
job of responding to events that occur within our game. However, we still need to
create the events that will trigger changes in the variables we have connected. In
the next section, we will be modifying the player variables based on actions that the
player takes while playing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

Tracking the ammo and eliminated targets
To get our UI to respond to the player interacting with the environment, we will
need to modify the Blueprint scripting that controls the player and targets. To begin,
let's get the ammo counter to decrease when the player fires a shot from their gun.

Reducing the ammo counter
The Blueprints managing the firing of the player's gun are contained within the
FirstPersonCharacter Blueprint. Find this Blueprint within the Blueprints
folder of Content Browser and open it. Now find the large series of Blueprint nodes
contained within the comment block Spawn projectile. We want to ensure that
the counter tracking the player's current ammo count reduces by one, each time
the player fires a shot. The Blueprint scripting required to do so looks like this:

Find the final node in the chain, Play Sound at Location. Drag a wire from the
output execution pin of this node to empty grid space, and add a Set Player Current
Ammo node. Then drag a wire from the Player Current Ammo input pin to empty
space, and create an Int – Int node. Next, drag a wire from the top input pin of this
node out and add a Get Player Current Ammo node. Finally, fill in the bottom field
of the Int – Int node with 1. This sequence translates to: after firing a sound, set the
player's current ammo count to the existing ammo count minus one. Compile, save, and
play to see your ammo counter decrease every time you fire a shot from your gun.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Screen UI Elements

[60]

Increasing the targets eliminated counter
Next, we want to increase our targets eliminated counter by 1 every time a target
cylinder is destroyed. Recall that the Blueprint scripting that controlled the
destruction of the cylinder targets was attached to the CylinderTarget_Blueprint
Blueprint. Open this Blueprint, which is contained inside the Blueprints folder of
Content Browser.

There is only one chain of Blueprint nodes inside this Blueprint, all being triggered
by Event Hit. We will have to add our new nodes close to the end of this chain,
after all nodes except Destroy Actor. Break the link between the Spawn Emitter at
Location and Destroy Actor nodes, and then move Destroy Actor to the right to give
plenty of room for our new Blueprint scripting. The goal is to create a series of nodes
that will extract the current target kill count from the player character, and increase
it by one before going on to destroy the actor. The end result will look like what is
shown in the following screenshot:

Target Kill Count is a variable of the FirstPersonCharacter Blueprint, so just
as we did when we created our bindings earlier in the chapter, we will need
to get the player character object and cast it to FirstPersonCharacter. Add a
Get Player Character node, and then connect its Return Value pin to a Cast to
FirstPersonCharacter node.

Now drag a wire from the As First Person Character pin to empty grid space, and
add a Get Target Kill Count node. From that node's output pin, create an Int + Int
node, changing the bottom field to 1. Next, drag this new node's output pin into
empty space and create a Set Target Kill Count node. Additionally, you will have
to drag a wire from the casting node's As First Person Character output pin to the
Target input pin of the Set Target Kill Count node. Finally, connect the execution
pins of the Cast to FirstPersonCharacter, Set Target Kill Count, and Destroy Actor
nodes, ensuring that Destroy Actor is the final node in the chain. Compile, save, and
play the game to see the targets eliminated counter on the screen increase every time
you destroy a target cylinder:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Summary
In this chapter, we enhanced player experience by adding a HUD that tracks the
player's interaction with the environment. In doing so, you developed another
conduit through which you can communicate information to the player of your
game. By now, we have the skeletal structure of a first-person shooter, including
guns that shoot, targets that explode, and a UI that exposes the state of the world
to the player. We have already come a long way from the initial test scene, which
featured minimal player interaction.

In the next chapter, we will begin transitioning from building the foundation of our
game structure to constructing the design of our game. The core of any game is made
up of the rules that the player must follow in order to create a fun experience. While
the game in its current form features some basic rules that define how the targets
react on being shot, the overall experience lacks a goal for the player to achieve.
We will be rectifying this by establishing a win condition for the player, as well as
providing additional constraints that make the experience holistic and consistent.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[63]

Creating Constraints and
Gameplay Objectives

In this chapter, we'll be defining a rule set for our game, which will guide the player
through the play experience. We want to give the player the ability to start the game
and immediately identify what they have to do in order to win the game. In its most
basic form, a game could be defined by the win condition and the steps the player
can take to reach that win condition. Ideally, we want to ensure that each step the
player takes toward that goal is fun.

We'll begin by applying some constraints to the player in order to increase the level
of difficulty. A game without challenge quickly becomes boring, and we want to
ensure that every mechanic in our game is providing the player with an interesting
choice or challenge. We'll then set up a goal for the player to achieve, along with the
necessary adjustments to our enemy targets to make that goal a challenge to reach.
In this process, we'll work to accomplish the following:

• Reducing stamina while the player is sprinting
• Preventing the player's gun from firing if they run out of ammo
• Creating ammo pickups that allow the player to regain ammo
• Defining a win condition based on the number of targets eliminated
• Creating a menu that allows the player to replay or quit the game

upon winning

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[64]

Constraining player actions
One important consideration to make when adding enhanced capabilities to the player
is the impact that the ability had on both the challenge and feel of the game experience.
Recall that we added the ability for the player to sprint in the last chapter by holding
down the Shift key. As it currently stands, holding down the Shift key while moving
provides a significant increase in the speed at which the player can move. Without
constraints applied to this ability, such as an enforced waiting period between uses,
there would be nothing discouraging the player from holding down the Shift key
at all times as they move.

This goes against the goal we set out to accomplish by adding sprint functionality,
which was to provide more options to the player. If an option is so attractive that
the player feels compelled to utilize it at all times, it doesn't actually increase the
number of interesting choices available to the player. From the player's perspective,
the result would be the same if we just increased the base speed of the player to the
sprint speed.

We can rectify this and other issues currently faced by our game prototype by
adding constraints that limit player abilities to increase decision making.

Draining stamina while sprinting
To add a constraint to the sprinting ability of the player, we'll need to return to the
Blueprint where we originally defined the ability. Open the FirstPersonCharacter
Blueprint located in the Blueprints folder of the Content Browser.

First, we need to create a couple of variables that will keep track of whether or not
the player is sprinting and how much sprinting should cost. Find the Variables
category of the My Blueprint panel and click the + button twice to add two new
variables. Rename the first variable to SprintCost and assign it the type Float.
Make sure to click the checkbox next to Editable as true and set the variable's default
value to 0.1. Rename the second variable to IsSprinting?. Set the variable type to
Boolean and make the variable editable. After compiling the Blueprint, find some
empty graph space near the block of Blueprint nodes you created for the sprint
function, which should have a comment block labeled Sprint around it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

We are going to create a custom event to drain the player's stamina at a consistent
rate while they are sprinting. A custom event allows us to trigger the Blueprints that
are attached to the event whenever another Blueprint calls that event. In this way,
groups of Blueprint nodes within the same Blueprint can communicate with one
another, even when they are not connected directly:

Search for a Custom Event node and add it, putting it a moderate distance away
from your other sprint nodes. When you add a Custom Event node, look at the
Details panel and find the Name field. This allows you to create the name of your
custom function. The name you give to the custom event is important as you will be
establishing the name by which the function will be referenced by the function calls
that trigger it. In this case, let's call the function Sprint Drain. Type Sprint Drain
into the Name field and press the Enter key to establish the event. The Blueprint
structure we'll be following for this sequence looks like the following screenshot:

First, drag a wire from the Sprint Drain event onto empty grid space and add a Set
Player Stamina node. Next, attach the Player Stamina input pin to a Max (Float)
node. This node will output the highest of the float numbers given as inputs. We
want to ensure that the player stamina never dips below 0, so leave the bottom pin
at 0.0 and drag a wire from the top input pin of this node and attach it to a Float
– Float node. To the top input pin of the Float – Float node, attach a Get Player
Stamina node. In the bottom pin, we'll establish the amount of stamina to drain
while sprinting.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[66]

We could enter a number into the field next to the bottom input pin of this node.
However, if we ever wished to change the amount of stamina drained by sprinting,
we would need to open this Blueprint, find this node, and adjust the value within this
small text box each time. A better habit to get into is to use a custom, public variable
that we attach to this pin, which will allow us to tweak the amount of stamina drain
incurred by sprinting continually, without even entering the Blueprint editor interface.
Because we already created variables for both sprint cost and checking if the player is
sprinting, we'll use the sprint cost variable here. Either drag the SprintCost variable
onto the bottom input pin of Float – Float, or drag a wire from the bottom pin out and
search for Get SprintCost.

Next, we want to stop both the sprint and the stamina drain effect when the player
runs out of stamina. Drag a wire from the output execution pin of the Set Player
Stamina node and attach it to a Branch node. Now drag a wire from the Condition
input pin of this node and attach it to a Float >= Float node. Drag a second wire from
the Get Player Stamina node onto the top input pin of the Float >= Float node and
drag a second wire from the Get Sprint Cost node to the bottom input pin. This will
determine whether or not the player has enough stamina to continue sprinting.

In the event that the player does not have enough stamina to take another tick of
stamina draining sprinting, we need to force the player back to a walk speed and
clear the timer that will be calling this custom function. Do so by dragging the
CharacterMovement component down from the Components panel and drop it
near the Branch node. Drag a wire from this node and attach it to a Set Max Walk
Speed node. Set the Max Walk Speed field to 600 to match the default walk speed
we established. Now, connect the input execution pin of this node to the False output
execution pin of the Branch node.

Next, drag a wire from the Set Max Walk Speed node's output execution pin and
attach it to a Clear Timer node. Type in Sprint Drain precisely into the Function
Name input field to link it to the custom event. Finally, attach a Set Is Sprinting?
node to the output execution pin of Clear Timer, ensuring that the checkbox is
left unchecked.

Now select all five nodes and create a comment around them explaining their utility
for draining the player's stamina. I chose Sprinting Drains Stamina by Sprint Cost.
The next step will be to call our new custom event from inside the Blueprint nodes
that manage our sprint. Remember to compile and save the Blueprint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Using looping timers to repeat actions
Now, we want to customize our sprint Blueprint nodes to fire the custom event
that we just created so that the player's stamina drains as they sprint., as seen in the
following screenshot:

From the output execution pin of the node setting walk speed to 2200, drag a wire
onto empty space and add a Set Is Sprinting? node. Check the checkbox inside this
node to set the Boolean to true when the player is sprinting. Next, we want to make
sure that stamina is continually drained as long as the left Shift key is held down.
To do so, we can utilize a timer, as shown in the following screenshot:

Timers allow us to perform an action after a designated amount of time has expired
or even fire an action repeatedly on a set time interval. It is this second functionality
that is going to serve the purpose of looping our sprint drain function repeatedly.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[68]

Drag a wire from the execution output pin of the Set Is Sprinting? node onto
empty graph space and add a Set Timer node. Inside this node, click on the field
underneath the label Function Name, and type in Sprint Drain to connect the
timer to our custom event.

The second input we want to adjust in the timer node is labeled Time, which will
determine the interval at which our sprint draining event is triggered. Put .5 into
the Time field to give the draining effect a notable, steady default rate. If you expect
that you might want to tweak this value repeatedly, you could also choose to create
a custom float variable and attach that to this input instead, in a way similar to how
we handled SprintCost. Finally, drag a wire from the red output pin of the Set Is
Sprinting? node and attach it to the Looping input pin to ensure that Sprint Drain
is called repeatedly at each time interval as long as the Is Sprinting? Boolean is set
to true.

With this completed, this function will now ensure that the value we designated for
the SprintCost variable will be drained from the player stamina meter every .5
seconds, starting when the left Shift key is pressed as long as the player is sprinting.
However, we want the drain effect to stop when the player stops sprinting by letting
go of the key. To accomplish this, we need to stop the timer using Clear Timer, just
as we did inside the Sprint Drain function.

Attach a Clear Timer node to the output execution node of the Set Max Walk Speed
node attached to the Left Shift node's Released output pin. This node will abort out
of the timer attached to the function name given. Type in Sprint Drain into the
Function Name field of this node to link the node to the timer node we just made.
End this sequence by attaching a Set Is Sprinting? node to the output execution pin
of Clear Timer and leave the checkbox unchecked.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

As an alternative to Clear Timer, you could use the node Pause Timer.
Pausing the timer works almost identically, except that the remaining
time on the timer countdown before it was paused would persist when
the timer is activated again. So if you paused a ten second timer that had
five seconds left until the next activation, the attached function would
trigger next after five seconds instead of ten at next activation.

Compile, save, and test the game. As you sprint around the level, you should see
your stamina meter deplete in regular increments while the left Shift key is held
down. The next step to constrain sprinting is to ensure that the player cannot
initiate a sprint if they are drained of stamina.

Blocking actions with branches
Preventing the player from sprinting when they don't have sufficient stamina can
be accomplished by adding a Branch node right after the sprint function trigger.
Find the InputAction Sprint node and break its Pressed execution pin connection
with the Set Max Walk Speed node. Add and connect a Branch node to the Pressed
execution pin. Its output execution pin should then be connected to the Set Max
Walk Speed node to again establish a complete chain. Now that the branch node
is set up, we need to establish the condition that will allow the left shift trigger to
continue activating the speed change through the True branch.

Drag the Condition input pin of the Branch node onto empty grid space and add a
Float >= Float node. Drag the variables Player Stamina and Sprint Costs onto the
grid, selecting the Get node for both. Attach Get Player Stamina to the top input pin
of the Float >= Float node and attach Get Sprint Cost to the bottom input. The final
result should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[70]

Regenerating stamina
The final element of stamina and sprinting we'll create is background stamina
regeneration, so that the player has a way of recovering from running out of stamina.
To accomplish this, we'll be taking advantage of the Event Tick trigger to increment
the player's stamina gradually:

To create the event shown in the preceding screenshot, start by finding some empty
grid space and add an Event Tick node. Attach a Branch node to the Event Tick
node's output execution pin. Drag the variable Is Sprinting? onto the Condition
pin to create a Get Is Sprinting? node attached the Branch node.

As Event Tick fires each frame, we want to force this function to wait until a regular
amount of time in seconds has passed. To do this, we'll be using a Delay node. Drag a
wire from the False output execution pin of the Branch node and attach it to a Delay
node. Set the Duration field to 1 to ensure that the stamina recharge only happens
once per second.

Next, drag out the Player Stamina variable, create a Set node, and attach it to the
Completed output execution pin of the Delay node. Drag a wire from the input pin
of this node out to empty grid space and add a Min (Float) node. This node will
output the lowest value float that is linked among its inputs. As our stamina meter
has a scale from 0 to 1, and we want to ensure it never goes over 1, type in 1 into
the bottom input field.

Now drag a wire from the top input pin and attach it to a Float + Float node. Attach
a Get Player Stamina node to the top input pin of this addition node. For the bottom
pin, we'll want to determine a recharge rate. Create a new variable inside the My
Blueprint panel and call it StaminaRechargeRate. Set its type to Float, check the
checkbox labeled Editable, and set its default value to 0.05. Finally, drag that
variable out and attach a Get Stamina Recharge Rate node to the bottom input
pin of the Float + Float node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Compile, save, and play to test our work. You'll now see that running out of stamina
will block subsequent uses of sprint until additional stamina has been restored
through the recharging effect.

Preventing firing actions when out of ammo
For the next constraint that we'll place on player abilities, we need to restrict the
player from firing their gun when they reach an ammo count of 0. To do so, find the
group of nodes that manages firing the gun, grouped by the comment block labeled
Spawn projectile. We will add a branch statement right after the InputAction Fire
trigger that starts this chain of nodes:

Start by breaking the connection between the InputAction Fire and Montage Play
nodes, and then add and connect a Branch node between them. Now find the
variable PlayerCurrentAmmo from the My Blueprints panel and drag it near the
Branch node, selecting the Get option to place the Get Player Current Ammo node.
Drag a wire from the output pin of this node and add an Integer > Integer node.
Leave the bottom input field at its default value of 0. Connect the output pin of the
node to the input Condition pin of the Branch node.

Now compile, save, and test your game. You should find that the gun no longer fires
when the ammo counter reaches 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[72]

Creating collectable objects
Restricting the player from firing their gun when they run out of ammo forces the
player to be considerate of the accuracy of the shots they attempt within the game.
However, limiting ammo would be unduly punishing without a way of acquiring
more. We don't want ammo to naturally recharge like our stamina meter. Instead,
we'll create a collectable item to allow the player to regain ammo by exploring and
traversing the level.

Setting up collection logic
To create a collectable item, we will first want to start a new Blueprint that will
determine the properties of each instance of that object that appears in the world. To
do so, navigate to the Content Browser of the editor and open the Blueprints folder.
Add a new Blueprint class, choose the class type Actor, and name it AmmoPickup.
Once the Blueprint is made, double click on AmmoPickup to open the Blueprint editor.

In the viewport window that appears, we will see a simple white sphere. This is the
default appearance given to empty actor objects before a mesh has been applied.
To give the object a visible shape in the game, we first need to add a Static Mesh
component to the Blueprint. Find the Components panel, click Add Component,
and choose the Static Mesh option.

In the Details panel that appears, find the Static Mesh category with the field
currently hosting the word None as no static mesh has yet been attached. In addition
to attaching the Static Mesh component to the Blueprint giving the ability for a mesh
to be associated with this Blueprint, we also need to designate which mesh will be
displayed for that Static Mesh component.

Click on the drop-down menu for the static mesh, and then click on the bottom right
button labeled View Options. In the popup menu that appears, ensure both Show
Plugin Content and Show Engine Content have checked checkboxes next to them.
This ensures that the assets included from plugins you installed in the engine and
the default assets Epic included in the engine are seen in asset search results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

With the drop-down menu now properly searching for engine assets, search for
Shape_Pipe and choose it. This mesh was not made for ammo pickups explicitly,
but this item will be small enough that we can make it serve our purpose. Right
below the Static Mesh category, find the Materials field and attach the material
called M_Door. Finally, edit the Transform category's Scale values to be half their
default size, 0.5 across the x, y, and z axes.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[74]

While design prototyping a game, it is most often useful to take
advantage of readily available assets rather than taking the time to
create each asset from scratch. This allows you to focus your time
and effort on determining what mechanics will result in the best play
experience rather than spending time creating art assets that might
later be discarded if the mechanic is removed from the design.

After adding the mesh, we need to add a collider of some kind so that other
objects, such as the player character, can physically interact with our pickup. In the
Components panel, with the StaticMesh component already selected, click on Add
Component and add a Capsule Collision component. A thin orange line will appear
in the viewport panel, representing the boundaries of the capsule shape collision.
Minor adjustments to the position, rotation, and scale of the collision will be necessary
in order to ensure that the entire mesh is contained inside of the collision that should
surround it. This can be done using the transform controls at the top of the viewport
panel or by using the shortcut keys w (for moving), e (for rotating), and r (for scaling).

With the mesh and collider added, click on the Event Graph tab to begin adding
Blueprint logic to our collectable. In the Event Graph tab, start by adding the trigger
Event Actor Begin Overlap. This trigger will activate subsequent Blueprint nodes
when the object attached to this Blueprint collides with any other object. In this case,
we want our ammo collectable to be picked up when the player walks into the object:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

To ensure that the ammo collectable only activates when the player walks over it and
that collecting an ammo pickup can impact the player's ammo counter, we first need
to ensure that we are casting as the player. Attach a Cast To FirstPersonCharacter
node to the Event Actor Begin Overlap trigger. Finally, connect the Other Actor
output pin to the input Object pin of the casting node.

Now, we have a triggered event happening when the player character moves over
our collectable object. When this happens, we want to add ammo to the player's
ammo count. To do so, drag out a wire from As First Person Character output pin
and attach it to a new Set Player Current Ammo node. Next, drag a second wire
from As First Person Character output pin and attach it to a Get Player Current
Ammo node. Drag the output pin from this new node and attach it to an Int + Int
node. Next, drag the output pin from the Int + Int node back to the Player Current
Ammo input pin of Set Player Current Ammo node.

The final step is to determine how much ammo to add when ammo collectables are
picked up. To allow this number to be flexible, let's create a new editable variable
called Ammo Pickup Count. Add this variable from the My Blueprints panel setting
it to an Int type variable. Ensure that the Editable checkbox is checked, compile the
Blueprint, and then set the variable's default value to 15. Finally, drag a Get Ammo
Pickup Count node and attach it to the bottom input pin of the Int + Int node.

Next, let's trigger a sound and destroy the object itself when the collectable is picked
up, as shown in the following diagram:

Drag a Play Sound at Location node and connect it to the output pin of the Set
Player Current Ammo. Using only sounds provided in the engine, I found the
CompileSuccess sound wave to work for our needs, so ensure that the View Engine
Content is checked under View Options, and then select that file from the Sound
drop-down menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[76]

We want to trigger that sound at the location of the ammo pickup, so attach a Get
Actor Location node to the Location pin of the Sound node. Finally, add a Destroy
Actor node at the end of the chain to ensure that each collectable can only be grabbed
once. Compile and save the Blueprint.

Now return to the level, and drag the AmmoPickup Blueprint into the level. Do
this two or three times in different locations around the level to seed the area with
ammo pickups. When you are satisfied, save and click Play to test the game. You
should see your ammo counter increase every time you step onto one of the ammo
pickups.

Setting a gameplay win condition
One of the final steps we need to establish a full game loop is to create a condition
for the player to win. To do so, we will modify our HUD and controller Blueprints
to account for a target goal that the player must strive to hit.

Displaying a target goal in the HUD
First, we need to create a variable that will establish how many targets we are asking
the player to destroy in order to achieve a win. Open up the FirstPersonCharacter
Blueprint and create a new variable called TargetGoal. Make it an Integer variable
type, ensure Editable is checked, and then set its default value to 2 for now.

Now that we have created a target goal, we should display this information to the
player. Open the HUD Blueprint widget we created under our UI folder. From the
Designer view, find the Hierarchy panel. Drag two more Text objects from the
Palette panel onto the Goal Tracker object in the Hierarchy. For the first text object,
change the Text field to / , including the space before and after the slash. For the second
text object, find the Text field and enter 0. You might have to adjust the size of Goal
Tracker object and click the button next to it to create a new binding.

Now, looking at the Graph view, select the new function Get_TargetGoal_Text_0.
Similar to the other HUD bindings we created in the last chapter, we'll need to take
the target goal variable from the FirstPersonCharacter Blueprint and return that
value in this function, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Create a Get Player Character node and drag its output pin onto a Cast To
FirstPersonCharacter node. Drag a wire from the casting node's As First Person
Character output pin and attach it to a Get Target Goal node. Next, drag the Target
Goal output pin onto the Return Value input pin of the ReturnNode. Finally,
connect the casting node to Get Target Goal Text 0 on the input execution pin
and ReturnNode on the output.

Compile, save, and play the game. You should see that the target counter increments
upward as targets are destroyed. The displayed goal number shown to its right does
not change. Now, we need to ensure that the player gets feedback when they reach
their target goal.

Creating a win menu screen
To give the player feedback once they have won our game, we are going to create a
win menu screen that will appear upon destroying the requisite number of targets. To
create a menu, we are going to need another Blueprint widget, like what we developed
for the HUD. Navigate to the UI folder we created and add a new Blueprint Widget
found under User Interface in the add menu. Name this Blueprint WinMenu.

We are going to set up three elements for this menu screen. The first will be a simple
text object that broadcasts to the player You Win!. The other two elements will be
buttons that allow the player to restart the game or quit out of it. To start with, drag
in two Button objects and one Text object onto the CanvasPanel. Next, select the
Text object and change its Text field to say You Win!. Change the font size to 72 and
the font color to a light green, and then resize and reposition the text object on the
canvas so that it appears in the top middle of the screen, but a little lower than you
placed your HUD objects in the previous chapter. Finally, anchor the object to the
top middle of the screen by selecting the second option from the Anchors selector.

Now, drag an additional Text object, and place one on top of both Button objects.
Rename the two Button objects Restart button and Quit button. Change the size
of the buttons so that they are roughly the same size as our You Win! textbox and
stack them below the text display. Anchor both buttons to the center of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[78]

Next, select the Text object under the Restart button and change its Text field to
Restart. Then, change the font size to 60. Change font color to black to ensure it
shows up on our gray buttons. Finally, click on the second button for both the
Horizontal Alignment and Vertical Alignment settings. Do the same operations
on the Text object attached to the Quit button, except that the Text field should
display the text Quit.

Now we need to add actions that will fire when the buttons are pressed. Click on the
Restart button object, scroll down to the bottom of the Details panel, and click on the
+ button next to the OnClicked event. This will add an event that triggers when the
button is clicked.

You will be taken to the graph view, where a OnClicked (Restart button) node
will appear. Attach an Open Level node to this. Type in the name of your level
into the Level Name field, ensuring accuracy of spelling. If you've been following
along and have not changed the name of the level from the template, this will be
FirstPersonExampleMap. Doing this will reopen the level when the player clicks
on the button, resetting all aspects of the level, including targets, ammo collectables,
and the player.

After the Open Level node, attach a Remove from Parent node. This node tells
our WinMenu objects to stop displaying. We want the menu to go away once the
level is reset.

Now return to the designer view and click on the Quit button object. Click on the
+ button next to the OnClicked event here as well. You'll be taken back to the graph
view, this time with a new OnClicked (Quit button) node. Attach a Quit Game node
to this event so that the player can shut down the game by clicking the Quit button,
as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Displaying the menu
Now that our menu has been created, we need to tell the game when to show it to
the player. As we called our HUD objects from within the FirstPersonCharacter
Blueprint, let's go ahead and call this menu from the same location. Open
FirstPersonCharacter in the Blueprints folder.

We are going to need to trigger off some event that will signal the end of the game.
Before we even determine what that signal will be, we can create a Custom Event
node to represent it. Add a Custom Event node to some empty graph space and
rename it to End Game.

When the victory condition is met, we want to stop the player from continuing to
move around the game world. To do so, attach a Set Game Paused node to our event
and check the Paused checkbox. Next, add a Get Player Controller node below the
End Game event node. Drag out its Return Value output pin and attach it to a Set
Show Mouse Cursor node. Check the checkbox next to Show Mouse Cursor and
attach this node to the output execution pin of Set Game Paused. This will enable the
player to regain control over the mouse cursor after the game is paused, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Constraints and Gameplay Objectives

[80]

Now that we have stopped the game from playing, we want to actually display the
menu. Attach a Create Widget node to the end of the chain and select Win Menu
from the Class dropdown. To conclude this Blueprint chain, drag a wire from the
Return Value output pin and attach it to an Add to Viewport node.

Triggering a win
The final step for us is to determine the conditions that will result in the End Game
custom event being triggered. We want the event to happen once the player has
killed a sufficient number of target cylinders to meet the target goal. We can evaluate
this each time a target is destroyed. To do so, open CylinderTarget_Blueprint in the
Blueprints folder and navigate to the end of the Blueprint chain in the event graph.

We want to create a Branch node that will allow us to check if the last destroyed
target was the last one needed to reach the goal. Attach a Branch node to the Set
Target Kill Count node near the end of the chain. You can reattach the Destroy
Actor node to the False output of the Branch node.

Now we need to establish the condition that the branch will check. We are going to
want to compare the Target Kill Count variable to see if it has reached or exceeded
the Target Goal variable. To do so, create an Int >= Int node and drag its output pin
to the Condition pin of the Branch node.

Next, find the Get Target Kill Count node that already exists and drag a second wire
from its output pin to the top input pin of the Int >= Int node. Then, find the Cast to
FirstPersonCharacter node and drag out a wire from its As First Person Character
output pin onto a new Get Target Goal node. Drag the output pin of this new node
to the bottom input pin of the Int >= Int node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Now drag a third wire from the Cast to FirstPersonCharacter node's output pin and
attach it to a new End Game node, which will call our custom event. Connect this
node to the True output of the Branch node, and then make a second connection
to the Destroy Actor node after it. This should complete your branching logic and
produce a result that looks like the following screenshot:

Compile, save, and press play to test the game. If all of the Blueprints are set up
correctly, you should see the game pause and a victory menu appear as soon as you
destroy a second target. Clicking on the Restart button will reload the level from
the start, and clicking Quit will close the play session.

Summary
In this chapter, we enhanced the play experience by providing productive constraints
on the player's abilities and established a goal for the player to accomplish. In the
process, you learned how to use timers to repeat actions, how to create collectable
objects in the game world, and how to create a menu system. The components that
make up the foundation of a video game experience are all present in the game that
we've built. If you desire, you could spend some time customizing the level layout
to create a properly challenging game experience that is uniquely yours.

In the next chapter, we'll begin tackling a more advanced subject of Blueprint
scripting and game development—artificial intelligence. We will replace our target
cylinders with enemies that can patrol between points and pursue the player around
the level.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[83]

Making Moving Enemies
with AI

In this chapter, we'll be adding additional challenge to our gameplay by making
enemies that pose a threat to the player. To do so, we'll leave behind our target
cylinders in favor of enemies that have AI behavior. We want to set up enemies that
have the potential to pose a threat to the player and are capable of analyzing the
world around them in order to make decisions. To accomplish this, you are going to
learn about Unreal Engine 4's built-in tools for handling AI behavior and how those
tools interact with our Blueprint scripting. In this process, we will accomplish the
following goals:

• Constructing an AI that is capable of decision-making using a Behavior Tree,
a Blackboard, and an AI Controller

• Creating a patrol path in the level that the AI will follow using a NavMesh
• Modifying the AI to pursue the player character when they see the player

Setting up the enemy actor to navigate
Until now, our targets have been represented by basic cylinder geometry. This
worked well for prototyping a non-responsive target that is present only as an
aiming challenge for the player. However, an enemy that will move around and
present a threat to the player will need a recognizable appearance that will at least
broadcast to the player its direction of travel. Fortunately for us, Epic has created a
freely available asset package with Unreal Engine 4, which we can use to bring in a
humanoid model into our game — one that is perfect for our new enemy type.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[84]

Importing from the marketplace
For this step, we'll step out of the Unreal Engine editor and will focus on the Epic
Games Launcher. Open the launcher and navigate to the Marketplace section along
the left-hand side of the window. The asset we are interested in is in the Characters
and Animations section of the Marketplace. Once you're there, find the Animation
Starter Pack, which should have a noticeable green FREE banner over the image
of a blue character. Click on this image and you will be taken to the asset page.

Next, click on the green Free button. After a moment, the button should turn into
a yellow Download button. Click on this button and wait as the asset package is
downloaded to your computer. Once this is done, the button will be replaced once
more with a yellow Add to project button. Click on this button and select the project
you have been using to build your game. A folder called AnimStarterPack will be
added to the Content folder of your project.

Expanding the play area
In order to provide an interesting environment for our intelligent enemies to
chase the player, we might need to make some changes in the default first person
example map layout. The existing layout, while being serviceable for target shooting,
is likely too cramped for a player to be able to successfully avoid an enemy that is
chasing them.

Level design does not directly intersect with Blueprint scripting, so we won't go
through a step-by-step process of how you should modify your level. Instead, we'll
take this chance to customize the experience to the kind of game experience you
would like to provide. Minimally, you'll want to modify the layout of the map so
that there is additional space to move around. You might also create some areas for
the player to be able to take cover or areas that would make for interesting patrol
points for enemies. Basic manipulation of the level can be accomplished by moving
existing objects around in the 3D Viewport. You can expand the size of the play
space by moving the walls that make up the boundaries. You can also add additional
basic objects, such as cubes and spheres, to your level to serve as additional obstacles
or cover.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

To quickly give a little bit of additional variety to the gameplay, I chose to create
a second level accessible by ramp to both the player and enemies. I also expanded
the play area to be twice as wide as it was earlier. An image of the quick layout
modifications I made is shown in the the following screenshot:

As you change the position of static objects in the level, you will see a
prompt that lighting needs to be rebuilt. This is because lighting information
is attached (or in engine terms, it's baked) to static objects ahead of time to
increase performance once the game is played. After you are done with
your changes to the level, click on the Build button to rebuild the lighting
information with your new object layout.
Also note that when changing the physical dimensions and placement of
the walls that surround the template map, you will also want to increase
the size of the LightmassImportanceVolume. This will ensure that
your entire playable area gets the same high-quality lighting treatment.

Making the level traversable with a NavMesh
In order to create AI behavior that allows our enemies to traverse the level, we need
to create a map of the environment that the AI will know how to read and navigate
with. This map is created with an object known as a NavMesh. To create a NavMesh,
find the Modes panel. With the Place tab selected, click on Volumes and then drag
the Nav Mesh Bounds Volume object out onto the level.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[86]

Now you will want to move and scale up the Nav Mesh Bounds Volume until the
entire walkable space of your level is contained within it. When you think you have
your walking areas contained within the volume, press the P key on your keyboard
to see if the NavMesh is placed correctly. If so, you'll see a green mesh on top of your
floors, as seen in the following screenshot:

You can press P at any time to toggle the green NavMesh visibility
on and off.

Setting the stage for intelligence with
AI assets
With our level and NavMesh now set up, we can return our focus to creating the
enemy. First, we need to establish a Blueprint that will contain the enemy character.
From your project directory in the Content Browser, create a new folder called
Enemy. Open this folder; right-click on empty space and select Blueprint Class. Open
the All Classes group at the bottom of the popup and type ASP into the search bar.
Select the ASP_Character object to create a new character Blueprint. We'll name this
Blueprint as EnemyCharacter.

Now that we have a Blueprint to contain our enemy character, we need to create
three additional objects that will work together to manage the behavior of our
enemy. The first of these is called a Behavior Tree. A Behavior Tree is the source of
the decision-making logic that will instruct our enemy on what conditions should
cause it to perform which actions. To create a Behavior Tree, right-click in the folder
and then on the Miscellaneous category; now, select Behavior Tree. Name the new
Behavior Tree as EnemyBehavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

The second object we need to create is an AI Controller. The AI Controller will
serve as a connection between the character and the Behavior Tree. It routes the
information and actions that are generated within the Behavior Tree to the character,
which will enact those actions. To create an AI Controller, right-click in the folder
and click on Blueprint Class; now search for and select AIController. Name this
controller EnemyController.

The final object we'll create to control the behavior is called a Blackboard. A
Blackboard is a container for all of the data that an AI controller needs to be
governed by its Behavior Tree. To create a Blackboard, right-click in the folder and
click on the Miscellaneous category; now select Blackboard. Predictably, we'll name
this Blackboard EnemyBlackboard.

Next, we should make some modifications to EnemyCharacter. Because we created
EnemyCharacter as an ASP_Character object type, it inherited information about
the desired mesh, texture, and animations from the character created for the
animation pack we imported. Some of this information, such as the mesh and
support for the animations, we will want to keep. However, we need to ensure that
it knows how to be controlled by the right AI Controller. To change this, open the
EnemyCharacter Blueprint now.

With EnemyCharacter open, look at the Components panel. Click on
EnemyCharacter(self), which will be the top item in the components list. Now look
at the Details panel and find the Pawn category. The last element of this category
will be a drop-down list for the AI Controller Class. Change the selection of this
drop-down list to our new EnemyController.

While we're editing EnemyCharacter, we should change the color of the enemy as
well. Currently, the mesh shows a blue humanoid that appears to be of the same
style as that of the player's arms and gun. To better indicate to the player that
the character is an enemy, we can change the mesh to use the same TargetRed
material we used for the cylinders in the previous chapters. To do so, click on Mesh
(Inherited) and find the Materials category in the Details panel. Change the material
from the blue default to the TargetRed material we created. You should see the
humanoid character in the viewport change into a red color. Compile and save it and
return to the level editor. Drag the EnemyCharacter Blueprint onto the level to create
an instance of an enemy in our map. Rename the instance of EnemyCharacter in the
World Outliner to Enemy1.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[88]

Creating navigation behavior
The first goal for our enemy will be to get it to navigate between points we create on
the map. To accomplish this, we'll need to create points on the map that the enemy
will be navigating to, and then we need to set up the behavior that will cause the
enemy to move to each of the points in a cycle.

Setting up patrol points
Let's start by creating the path we want the AI to patrol. While still being in the level
editor, look at the Modes panel. With the Place tab selected, click on All Classes
and drag a Target Point object onto the area of the map that you would like for the
enemy to start the patrol. Now look at the World Outliner panel and click on the
folder icon with a plus symbol that sits to the right of the search bar. Click on this to
create a new folder called PatrolPoints. This folder will contain all of the points
we create so that we can keep the main list tidy. Drag the TargetPoint object in the
outliner into this new folder and rename the object as PatrolPoint1.

Now go to the Details panel of PatrolPoint1 and click on the green Add
Component button. Add a Sphere Collider to the patrol point. Adding a collider
will allow us to check whenever the enemy actor overlaps with the patrol point.

Duplicate the PatrolPoint1 object in the World Outliner by right-clicking on it and
clicking on Edit and then on Duplicate. The new object will automatically be named as
PatrolPoint2. Drag the second patrol point somewhere else in the level, far enough
away from the first so that movement between the two points would be noticeable:

The target point is a small crosshair icon that will appear only in edit
mode for the level but is invisible to the player while the game is running.
This allows us to visualize the route we are creating for the enemy
without having a visual artifact in play mode that looks distracting or
gives information away.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

Enabling communication between assets
With our patrol points established, we can transition to building the intelligence
of our enemy. To begin, we are going to give our Blackboard the ability to store
information about the location of a patrol point. Open EnemyBlackboard from the
Content Browser. Click on New Key and select Object as the Key Type. Call this
new object key as PatrolPoint, as shown in the following screenshot.

Now that we have a Patrol Point key setup within our Blackboard, we need to set
the value of that key within the Blackboard to the actual patrol point object in the
world. We can do this from the EnemyCharacter Blueprint, so open the character
Blueprint now.

We want to create a sequence that starts when the enemy character is created and
then grabs the EnemyBlackboard. It will then set the key value called Patrol Point
inside the Blackboard to the value contained within a variable we will create for the
character Blueprint representing the enemy's current patrol point target, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[90]

First, we want to create a variable that will store our two patrol point objects. Add
a new variable from the My Blueprint panel and call it PatrolPoint1. Set the
Variable Type to Actor. Now right-click on the variable, and duplicate it. Call this
duplicate PatrolPoint2. Finally, duplicate the Actor variable a third time and call
this variable CurrentPatrolPoint. We will change the patrol point stored in this
variable each time we want to move the enemy to a new location.

With the three variables created, we next want to create an Event Begin Play node.
Next, add a Get Blackboard node. Drag a wire from the Target input pin; search for
and select Get Reference to Self to attach a Self node to the pin. Now drag a wire
from the Return Value pin and attach it to a Set Value as Object node. Connect
this node's input execution pin to the Event Begin Play node.

Returning to the Set Value as Object node, drag a wire from the Key Name input
and attach it to a Make Literal Name node. Set the Value field within this node to
PatrolPoint so that it references the key we created inside the Blackboard. Finally,
drag the Patrol Point variable to the Event Graph, and select Get. Connect the Get
Patrol Point node to the Object Value input pin of Set Value as Object. Select all of
these nodes and create a comment for yourself that describes the functionality.

Next, we want to create a series of nodes that will swap the patrol point the enemy
is moving toward each time they successfully reach one of their two patrol points.
To do this, we will create two branches that will trigger off a detection of a collider
overlap, as shown in the following screenshot:

Begin by creating an Event Actor Begin Overlap node. Attach this node to a
Branch node. Drag a wire from the Condition input of the Branch node onto an
Equal (Object) node. This node evaluates whether the two objects attached to the
two inputs of the node are identical to one another. In our case, we want to evaluate
whether the object being overlapped by the enemy is the same object that is attached
to the Patrol Point 1 variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

Drag a wire from the Other Actor output pin of Event Actor Begin Overlap node
and attach it to the top input pin of the Equal (Object) node. Now drag the Patrol
Point 1 variable onto the graph and attach a Get Patrol Point 1 node to the bottom
input pin of the Equal (Object) node. If these two objects are equal, we want to
change the Current Patrol Point variable to Patrol Point 2. From the True output pin
of the Branch node, attach a wire to a Set Current Patrol Point node and attach a Get
Patrol Point 2 node to its input pin.

Next, we need to create a second branch series to test against the other patrol point.
Drag a wire from the False output pin of the Branch node and attach it to a second
Branch node. Attach the Condition input pin of this new Branch node to a new
Equal (Object) node. Connect the top input pin of the Equal (Object) node to the
Other Actor output pin of Event Actor Begin Overlap node.

Drag the second patrol point variable onto the graph and attach a Get Patrol Point
2 node to the bottom input pin of Equal (Object). Now attach the True output pin of
the second Branch node to a new Set Current Patrol Point node. Then, attach a Get
Patrol Point 1 node to the input pin of Set Current Patrol Point. Finally, attach the
output execution pins of both Set Control Patrol Point nodes to the input execution
pin of the Set Value as Object node in the other block of Blueprint nodes we used
to set the Blackboard key. This final step is important to ensure that the updated
Current Patrol Point value gets sent to the Blackboard every time the variable
changes value.

This finishes the work we have inside EnemyCharacter. Next, we need to go to the
AI Controller and instruct it to run the Behavior Tree that we'll be setting up. Return
to the Content Browser and open EnemyController.

In the Event Graph of EnemyController, add an Event Begin Play node. Connect
this node to a Run Behavior Tree node. Finally, set the BTAsset inside this node
to EnemyBehavior. That's all there is to do with the controller, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[92]

Return now to the level editor and select the Enemy1 object in the World Outliner
panel. Recall that this was the name we gave to the first instance of the generic
enemy type we're creating. We want to establish the initial patrol point for this
particular enemy. To do so, look at the Details panel and find the Patrol Point
field under Default; now select the object PatrolPoint1 in the drop-down list.

Teaching our AI to walk with the Behavior
Tree
We can now move on to the heart of the AI—the Behavior Tree. Return to the
Content Browser and open EnemyBehavior. On the right, change the Blackboard
Asset to EnemyBlackboard. You should now see our Blackboard key PatrolPoint
appear in the Blackboard panel on the bottom left.

Now look at the Behavior Tree panel, which will look similar to the event graphs we
are used to seeing inside of Blueprints. This is where we'll create the branching logic
that will determine which actions to perform, based on the conditions it is currently
experiencing. The top level of the logic tree will always be the Root, which simply
serves to indicate where the logic flow will start.

The darker line at the bottom of the Behavior Tree nodes is the connection point
between nodes. You can click and drag a wire from the dark area at the bottom of the
Root node and drop it onto empty space to get a new selection menu popup that will
allow you to add additional nodes to the Behavior Tree. Do so now and select the
Selector option, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

The two primary branching node types you'll utilize are the Selector
and the Sequence. A Selector node runs each of the nodes connected
underneath it, called its children, left to right but succeeds and stops
running as soon as one child successfully runs. Thus, if a Selector has
three children, the only way the third child node will be run is if the first
two children failed to execute because the conditions attached to them
were false. A Sequence node is just the opposite. It runs all of the children
in sequence left to right also, but the Sequence node only succeeds if all of
the children succeed. The first child to fail causes the whole Sequence to
fail, ending the execution and aborting the Sequence.

Underneath the Selector node, attach two Sequence nodes next to one another.
Select the Sequence node on the left and change the Node Name in the Description
panel to Move to Patrol. Next, select the other Sequence node and change its
name to Idle.

Notice the faint grey circles with numbers inside of them that are
positioned to the upper right corner of the two Sequence nodes. These
indicate the execution order of the nodes, which are ordered according to
their left to right positions. The first node to be evaluated will be labeled
with a 0 badge.

Now we need to add actions that will be triggered by the Sequence nodes. Drag a
wire down from the Move to Patrol node and attach a Move To node. This node
will be purple in color, visually distinguished as a node that results in actions. These
nodes are called task nodes and will always be the bottommost nodes in a Behavior
Tree. As a consequence, you will notice there is no attachment point for additional
nodes at the bottom of a task node, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[94]

Looking at the Details panel of our newly added Move To task node, you will notice
a few new options that are available for us to tweak the movement of our enemy
character. The first of these is a field called Acceptable Radius. This field indicates
the number of units the actor being controlled by the move task can be away from
the target before the task is considered complete. Setting the Acceptable Radius too
low might cause the enemy to appear jerky as it tries to move to the exact center of
the patrol point. Setting it too high might result in the movement being cut too short,
as the move is considered complete long before the enemy touches the patrol point.
Set the Acceptable Radius to 30 for a safe middle ground that matches the default
radius of a sphere collider and will have the AI stopping at a proximity to the target
that looks good. We don't want the enemy to move sideways or strafe toward the
target, so we can leave Allow Strafe unchecked. The Blackboard Key determines
the location that the actor will be moved to. As we only have one Blackboard Key,
it should be automatically set to our intended target which is PatrolPoint.

Next, drag a wire down from the node that we called Idle and attach it to a Wait
task node. The Wait node contains only two configuration fields. The Wait Time
field value determines how long the enemy will wait between movements to the
next patrol point. Set this value to 3.0 to add a three second pause between patrols.
The field below, named Random Deviation, allows us to add randomness to the
amount of time that passes while waiting. Enter 1.0 into this field to add a one
second variation to our three second wait time. This will result in a pause of
random length between two and four seconds between patrols.

Compile and save the Behavior Tree and then return to the FirstPersonExampleMap
tab. Find the enemy we placed called Enemy1 and select it in the World Outliner.
In the Details panel, navigate down to the Default category and set Patrol Point 1
to the object PatrolPoint1, Patrol Point 2 to the object PatrolPoint2, and set Current
Patrol Point to the patrol point object furthest away from the enemy's starting
position. We want to set these patrol points on the enemy instance in the world
rather than as defaults on the variables within the enemy Blueprint because we
want each enemy that we create in the future to have its own set of patrol points,
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

Save and click Play to test. You should see the red enemy character start navigating
to the first of the two patrol points. When it reaches the first point, it will briefly
pause and then start walking to the second patrol point. This pattern will continue
back and forth as long as the game is running.

Making the AI chase the player
Now that we have a patrol behavior established, we should make the enemy pose
some threat to the player. To do so, we will give the enemy the ability to see the
player and pursue them.

Giving the enemy sight with Pawn Sensing
To grant the enemy the ability to detect the player, we need to add a PawnSensing
component to the EnemyController. To do this, open the EnemyController
Blueprint and click on the Add Component button in the Components panel. Search
for and add the PawnSensing component. This component gives us the ability to
add a few additional event triggers to the EnemyController event graph. The one
we are interested in now is called OnSeePawn (PawnSensing), as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[96]

There is a second system that can be used for AI behavior development
and environment sensing called the Environment Query System (EQS).
As of Unreal Engine version 4.7.6, this feature is still in the experimental
development phase and has some bugs that prevent it from being
recommended for current development. However, with the release of
Unreal 4.8, the EQS features are expected to take over as the primary
system for developing AI that can sense the environment around them.
The pawn sensing behavior we cover in this book will remain usable
alongside the new EQS system, and many of these concepts will transfer
over. As with any new feature that gets introduced, the release of the
feature will be paired with some basic documentation, which is available
on Epic's website at https://docs.unrealengine.com/latest/
INT/.

Ensure you have the new PawnSensing component selected in Components
panel, and then with Context Sensitive searching checked, search for and add the
OnSeePawn node to the event graph. This event fires when the enemy is able to see
the player through line of sight. To transmit this information to our Behavior Tree,
we will first need to create a new Blackboard Key store and pass this information
to it. You can see how this is accomplished in the following screenshot:

Drag a wire from the Pawn output pin of the OnSeePawn node we just created and
attach it to a Cast To FirstPersonCharacter node. This will ensure that the enemy
only reacts to the player being seen as we do not want to trigger a chase behavior
when it sees other enemies.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

Next, we need to get a reference to the Blackboard. Add a Get Blackboard node to
the event graph. Drag a wire from the Target input pin of this node and attach a Self
node to it. Now drag a wire from the Return Value output pin and attach it to a Set
Value as Object node. Then, connect the As First Person Character output pin of the
casting node to the Object Value input pin of the Set Value as Object node. Also,
connect the execution pins of the Cast to FirstPersonCharacter and Set Value as
Object nodes.

The final step to pass the information about the player being spotted to the
Blackboard is to establish the key that will store the data. Drag a wire from the Key
Name input pin of Set Value as Object and attach it to a Make Literal Name node.
We don't yet have a key created on the Blackboard for this purpose, but that will
be our next step. For now, Enter PlayerActor into the Value field of this node.
As always, create a comment around the block of nodes reminding yourself of its
functionality; then compile and save your work.

Adding conditions to the Behavior Tree
Now, we need to create our Blackboard Key and create the Behavior Tree branch that
will instruct the enemy to chase the player. Open EnemyBehavior from the Content
Browser and then click on the Blackboard tab. Click on the New Key button and
create a new key of the Object type called PlayerActor. With the PlayerActor key
selected, look at the Blackboard Details panel. Click on the expansion arrow next to
Key Type and change the Base Class to Actor with the drop-down. For reference, fill
in the Entry Description to indicate that this key will store the player character and
leave Instance Synced unchecked, as shown in the following screenshot:

Now save and click on the Behavior Tree tab. We will need another Sequence
node that will connect to tasks to get the enemy to chase the player. Drag a wire
down from the Selector node and create a Sequence node to the left of our Move
to Patrol sequence node. Because we want the enemy seeing and chasing the player
to take higher priority over their patrol and idle behaviors, we want to ensure this
sequence is the left-most branch underneath selector. Change this new node's name
to Attack Player.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[98]

Next, we want to ensure that the tasks attached to Attack Player only trigger when
the enemy actually sees the player. To do this, we'll be adding a decorator node. A
decorator node attaches to the top of sequences and provides conditions that must
be met before that sequence can be triggered. Right-click on the Attack Player node;
hover over Add Decorator to expand the menu and select Blackboard to add a new
decorator that triggers off a Blackboard key. You will see a new blue box appear
directly above the Attack Player sequence. Click on this and look at the Details
panel, as shown in the following screenshot:

In the Details panel, find the Observer aborts dropdown and select the Lower
Priority option. Combined with the On Result Change option that is selected by
default for Notify Observer, this will indicate that when this condition changes to
true, all of the other sequences that are of lower priority should be aborted. This will
be visually indicated with a blue highlight around all of the lower priority sequence
nodes in the Behavior Tree view when you have this decorator selected.

Next, ensure that the Key Query is set to Is Set and change the Blackboard Key to
PlayerActor. This will check to ensure that the PlayerActor has a value set before
it allows Attack Player to run. Recall that PlayerActor is only set when the enemy
established line of sight with the player through its pawn sensing component.
Finally, change the name of this node to Can See Player? to reflect its functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

Creating chasing behavior
Now, we need to create the series of task nodes underneath the Attack Player
sequence that will make up the enemy's chasing behavior. Because we already have
a Blackboard Key that stores the player actor, including its location data, moving the
enemy character to the player is easy. Drag a wire from the Attack Player sequence
node and attach it to a Move To task node. Click on this node, and in the Details
panel, change the Blackboard Key to PlayerActor.

That's all that is necessary to get the enemy chasing the player! You can compile,
save, and press play to test run this behavior. When you run in front of the enemy
on its patrol path, it will break out of its path and begin pursuing you around the
level. However, you will notice that no matter what you do, the enemy will never
relent in its pursuit. As our end goal is to have the enemy reach the player and then
return to its patrol, we'll need to create some way for the enemy to break out of the
chase behavior.

To create a pause to allow an attack to happen, first create a Wait node and place it to
the right of the Move To node. Change the Wait Time on this node to two seconds,
which is roughly the time we might expect an attack to take. Combined with the
Move To, this will cause the enemy to chase the player until they are in range and
then wait two seconds before taking another action.

Now we need to create a way for the PlayerActor key to be reset so that the Can
See Player? decorator can fail after the pause happens, thus ending the chase
behavior. There is no built-in task to cover this functionality, so we'll need to create a
custom task to handle this. Click on the New Task button along the top menu of the
Behavior Tree, and select the BTTask_BlueprintBase option from the dropdown that
appears. This creates a new task using the basic Blueprint class as its base class.

You'll be instantly taken to a new tab where you can begin editing the behavior
of this task, but first let's return to the Content Browser to rename this task to
something useful. Find the new task object called BTTask_BlueprintBase_New
in the Enemy folder and rename the object to ResetValueTask. Double click on
ResetValueTask to return to the task's tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[100]

Before adding any nodes, change the Node Name in the Details panel to Reset Value.
Now go to the My Blueprint panel and add two variables. Call the first variable Key,
and change its type to BlackboardKeySelector. Rename the second variable Actor, and
change its type to Actor. Finally, ensure that both of the variables have the Editable
checkbox checked, as shown in the following screenshot:

With our variables created and our nodes named, we can start creating the behavior
of our task. Add an Event Receive Execute trigger node to the event graph. This
node simply triggers the attached behaviors when the task is activated within the
Behavior Tree. Next, drag a wire from the execution pin and attach a Set Blackboard
Value as Object node. Drag the Key variable onto the Key input pin. Then drag the
Actor variable to the Value input pin. Finally, drag a wire from the output execution
pin of Set Blackboard Value as Object node and attach it to a Finish Execute node.
Check the checkbox next to the Success input of this node. After giving the block
of nodes a descriptive comment container, the final result should look like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

This task will allow us to designate a Blackboard Key from the Details panel of the
task in the Behavior Tree and set that key to an actor of our choosing. We could have
replaced the generic public variables we created with the specific values we want to
set with this node, namely changing the PlayerActor key to null or empty. However,
when making new tasks, it is a good practice to make them generically useful with
reusable behavior that changes depending on the inputs given in the Behavior Tree.
With the task made to fit our needs, compile the Blueprint, save, and return to the
EnemyBehavior Behavior Tree.

Back in the Behavior Tree, drag a wire down from Attack Player and add our new
ResetValueTask task node to the right of both the Move To and Wait nodes. In the
Details panel, change the Key to PlayerActor and leave the Actor dropdown with a
None value. Finally, change the Node Name to Reset Player Seen.

This completes our work in the Behavior Tree to establish chasing behavior. Compile,
save, and press Play to test the behavior. As you navigate the player character in front
of the patrolling enemy, the enemy will stop its patrol and chase the player. When the
enemy reaches the player, it'll stop for two seconds before returning to its patrol path.
If it re-establishes the line of sight with the player, it will interrupt its patrol and begin
chasing the player again.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Moving Enemies with AI

[102]

Summary
In this chapter, we began the process of changing our simple, moving targets into
fleshed out game enemies that can challenge the player. In the process, you learned
the fundamentals about how AI Controllers, Behavior Trees, and Blackboards can
be leveraged together to create an enemy with the ability to sense the world around
them and make decisions based on that information.

As we continue the process of developing our AI to pose a serious challenge to the
player, you can use the skills you have learned to consider other kinds of behaviors
you might be able to provide to an enemy. Continued exploration of AI mechanics
will see you continually coming back to the core loop of sensing, decision making,
and acting that we began implementing here.

In the next chapter, we'll be extending our AI behavior to create an enemy that can
truly challenge the player. We will add the ability for the enemy to listen for the
player and investigate a sound as well as give the enemy an attack ability to damage
the player when they get too close. To balance the game around this new threat, we'll
also give the player the ability to fight back against the enemies.

www.it-ebooks.info

http://www.it-ebooks.info/

[103]

Upgrading the AI Enemies
In this chapter, we will be adding more functionality to our AI enemies to introduce
the potential for the player to fail, and for greater gameplay diversity. At this point,
we are going to begin settling on the kind of challenge we want to offer the player.
We are going to create zombie-like enemies that will relentlessly pursue the player,
creating an action-focused experience, where the player must try to survive against
hoards of enemies. We will start by giving greater capability to the AI, including
damage dealing and wandering patterns, in order to increase the difficulty of
surviving. We will then turn our attention to the player, giving them the ability to
fight back against these dangerous enemies. Finally, we will complete our difficulty
balancing by creating a system to spawn new enemies in the game world over time.
In the process, we will cover the following topics:

• Introducing an enemy melee attack that will damage the player's health
• Giving the AI the ability to hear the player's footsteps and shots
• Having the enemy investigate the last known location of the player based

on sound
• Allowing the player to destroy the enemies with their gun
• Spawning new enemies in the world
• Setting AI enemies to wander the level randomly

Creating an enemy attack
If the enemies we create are going to pose a real obstacle that stand in the way of
the player achieving the goals we create for them, we will first need to give the
enemies the ability to damage the player. In the previous chapter, we set up the
basic structure of an enemy attack pattern. It is triggered when the player enters the
enemy's line of sight. We are now going to introduce a damage component to this
attack, ensuring that there is some consequence of the enemy reaching melee range
of the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[104]

Making an attack task
To create an attack task that does damage, we will be extending the Attack Player
sequence we created in the enemy Behavior Tree. Open EnemyBehavior from
Content Browser now. From the Behavior Tree view, click on the New Task button
and select the BTTask_BlueprintBase option from the drop-down menu that
appears. As we did with the custom task to reset key values in the previous chapter,
we will want to navigate to the Enemy folder in Content Browser, and rename the
newly created BTTask_BlueprintBase_New object to DoAttackTask. Double-click
on DoAttackTask to return to EventGraph for the new task.

We will need to create two variables within the task, one to store the target of
the damage, and one to store the amount of damage to be applied. From the My
Blueprint panel, use the + sign button next to Variables to create two variables. Call
the first variable TargetActor, set its type to Blackboard Key, and check the box
next to Editable in the Details panel. Now rename the second variable to Damage,
set its type to Float, and ensure that it is set to be editable. Finally, set the Damage
variable's default value to 0.3.

With the variables created, look at the event graph of the task. We first want to grab
the target actor variable, where we will later store a reference to the player. To begin,
place an Event Receive Execute node. Now drag a wire from the output execution
pin of the event node to the graph, and search for IsValid in the search box. Attach
the IsValid node under the Utilities category to the event node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

Add a Get Blackboard Value as Actor node to the graph. Drag the Target Actor
variable onto the Key input pin of Get Blackboard Value as Actor. Then, connect the
Return Value output pin to the Input Object input pin of the IsValid node. Attach
an Apply Damage node to the Is Valid output execution pin of the IsValid node.
Next, establish how much damage is done on each attack by dragging the Damage
variable onto the Base Damage input pin of the Apply Damage node. Connect the
Return Value output pin to the Damaged Actor input pin of Apply Damage to
establish the target of the damage. Finally, conclude the task by attaching a Finish
Execute node to the Apply Damage node, and checking the box next to the Success
input. After applying a descriptive comment around this group of nodes, your final
result should look like the following screenshot:

With the custom attack task created, return to the Behavior Tree. Because we are
creating this attack as a melee attack, we want the enemy to perform the attack only
after reaching the player. Find the Attack Player sequence node in Behavior Tree,
drag a wire down from the bottom of the node, and add a new DoAttackTask task
node between the Move To and Wait task nodes, which already exist, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[106]

Click on the DoAttackTask node, and change the Target Actor selection in the
Details panel to PlayerActor. You can also change Node Name to Damage Player
to add some descriptive details to your use of the task. With our Behavior Tree set up
to use our custom task that applies damage, we should be in a good position to test
our work. However, if you compile, save, and test, you will find that the health meter
does not appear to be affected when the enemy closes in on you, despite the damage
being applied. To fix this, we must add an event to change the health meter when
damage is dealt. Go to Content Browser, navigate to the Blueprints folder, and
open FirstPersonCharacter.

Updating the health meter
Recall that in previous chapters, we linked the meters that are displayed on our HUD
to variables contained within FirstPersonCharacter. In order to show the health
meter decreasing in response to taking damage, we must decrease the player health
variable each time damage is received. We will also want to ensure that the player
health can never go below 0 to avoid potential bugs that an unexpected negative
health value might cause. The end result will look like the following screenshot:

Begin by adding the Event Any Damage event node to empty graph space. Drag
the Player Health variable onto the graph and use it to create a Get Player Health
node. Attach this variable node to a Float - Float node. Now drag a wire from the
Damage output pin of the event node, and attach it to the bottom input pin of the
Float - Float node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

To ensure that the health value never goes below 0, drag a wire from the output pin
of the Float - Float node and attach it to a Max (Float) node. Leave the bottom input
field at its default value of 0.0. This node will return the higher of the two values
given as inputs, such that if the calculated health ever goes below the lowermost
value of 0.0, it will return 0.0 rather than the player health calculated after damage
is subtracted. Finally, connect the output pin of the Max (Float) node to a Set Player
Health node to adjust the variable value, and thus the health meter display.

Select all of these nodes and create a comment that describes the functionality. Then
compile, save, and press Play to test. You should now notice the player health meter
depleting when an enemy gets within range of the player and stops to attack.

Making enemies hear and investigate
sounds
Now that our enemy is attacking the player, we want to give some additional
attention to the means by which the enemy can detect the player. Enemies that can
only pursue players who walk directly in front of them can easily be avoided. To
address this, we will take advantage of our PawnSensing component to have the
enemy detect nearby sounds that the player makes. If the player makes a sound
within the detection range of an enemy, the enemy will walk to the location of that
sound to investigate. If they catch the player in their sight, they will make an attempt
to attack. Otherwise, they will wait at the location of the sound for a moment before
returning to their patrol.

Adding hearing to the Behavior Tree
The first step to introducing any additional functionality to the AI is figuring out
where that logic will fit within the Behavior Tree. Go to \ Content Browser, open the
Enemy folder, and open EnemyBehavior. We are contemplating adding a sequence
of events that occur when the enemy hears a sound. We want the enemy to continue
attacking the player once they see them, so investigating a sound should be of a
lower priority on the Behavior Tree. Move the Attack Player sequence and all of
its task nodes further to the left in the Behavior Tree, leaving room between Attack
Player and Move to Patrol. This is where we will add our hearing sequence. Drag a
wire down from the Selector node, and attach it to a new Sequence node. Rename
this node to Investigate Sound.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[108]

To have an enemy investigate the point where it heard a sound, we will need to keep
track of two bits of information. The first is whether or not a sound has been heard.
The second is the location that the sound came from, and thus the location that the
enemy AI should investigate. We will create two keys within the Blackboard to store
this information. Click on the Blackboard tab of EnemyBehavior.

Next, click on the New Key button, and choose to make a key of the Vector type.
Call this key LocationOfSound. Click on New Key a second time, this time making it
a Bool type, and call it HasHeardSound. With the keys created, click on the Behavior
Tree tab to return to the Behavior Tree view.

Before we begin creating tasks, we can set up the condition that will determine
when the investigation of a sound should take place. To do this, right-click on the
Investigate Sound sequence node, hover over Add Decorator, and click on the
Blackboard option. Now click on the blue decorator, and look at the Details panel.
Under Flow Control, change the Observer aborts value to Lower Priority. This will
ensure that the investigation can begin as soon as a sound is heard, even if the enemy
is midway through a patrol task, by aborting the lower priority tasks. Now look at the
Blackboard category and change Blackboard Key to HasHeardSound. Combined
with Key Query being Is Set, this will allow the Investigate Sound sequence tasks
to fire only when a sound has actually been heard. Finally, name the node something
representative. I suggest Heard Sound?.

Setting up the investigating tasks
With the decorator set, we can move on to creating some of the tasks we will use
to cause the enemy to investigate the location of the sound. The first action of our
investigation sequence will be to move the enemy to the location of the sound. We
have already done something very similar in the attack sequence. Drag a wire down
from the Investigate Sound sequence, and attach it to a Move To task node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

In the Details panel of the Move To node, change Blackboard Key to
LocationOfSound. Now drag a second wire down and attach it to a Wait node.
Change Wait Time to 4 seconds and Random Deviation to 1 second. This will cause
the enemy to move to the location of the sound that it heard, and wait at that location
for 3 to 5 seconds, looking for the player.

Once the enemy is finished waiting at the investigation location, we want to reset
the Boolean key that contains the information that a sound was heard. We do
this so that when a new sound is heard, the key can be set to true one more time,
causing another investigation to occur. We have already created a custom task called
ResetValueTask. We need another task that does a similar job, but is capable of
resetting a Boolean value.

Click on the New Task button at the top of the Behavior Tree, and select the
BTTask_BlueprintBase option from the drop-down menu that appears. Return to
Content Browser and find the new task object called BTTask_BlueprintBase_New
in the Enemy folder. Rename this object to ResetBoolTask. Double-click on
ResetBoolTask to return to the task's tab. We will be assembling sets of Blueprint
logic to handle cases where we need to reset the variable telling the AI that a
sound was heard. The Blueprint nodes that we will construct can be seen in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[110]

Look at the My Blueprint panel and add two variables. Call the first variable Key
and change its type to BlackboardKeySelector. Rename the second variable to Bool
and change its type to Boolean. Finally, ensure that both of these variables have the
Editable box checked.

Now let's add the behavior for the task. Add an Event Receive Execute trigger node to
the event graph. Drag a wire out from the execution pin and attach a Set Blackboard
Value as Bool node. Next, drag the Key variable onto the Key input pin. Then, drag
the Bool variable onto the Value input pin. Finally, drag a wire from the output
execution pin of the Set Blackboard Value as Bool node, and attach it to a Finish
Execute node. Check the box next to the Success input of this node.

In addition to handling the execution event, we will also have to address what
happens when the hearing sequence in the Behavior Tree is aborted by the higher
priority execution of the attack sequence. Even if the hearing sequence is aborted
while in progress, we still need to ensure that the HasHeardSound variable is reset.

Add an Event Receive Abort trigger node to the graph, and attach it to another
Set Blackboard Value as Bool node. As before, drag the Key variable onto the Key
input pin and the Bool variable to the Value input pin. Finally, drag a wire from the
output execution pin of the Set Blackboard Value as Bool node, and attach it to a
Finish Abort node. Save the task and return to EnemyBehavior.

Drag a wire down and place a ResetBoolTask task node to the right of the Wait
node. Change the Key selection to HasHeardSound inside the Details panel of
ResetBoolTask. You should also change Node Name to Reset Player Heard in
order to be more specific about its functionality. The final sequence of tasks should
look like this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Interpreting and storing the noise event data
The PawnSensing component we added to EnemyController gives us the
foundation to build both visual and auditory sensing in our enemy AI. Thus, we
want to return to EnemyController and add some Blueprints that will instruct our
AI how to react to the sounds in the world around them. Go to Content Browser,
open the Enemy folder, and then open EnemyController.

In the Components panel, click on the PawnSensing object, and then use either the
search function or the Events section of the Details panel to add an OnHearNoise
(PawnSensing) node. This node will activate any time the PawnSensing component
attached to EnemyController detects a special kind of sound broadcast by a pawn
noise emitter. We will have to set up the Blueprint such that the enemies only detect
noises that are made a short distance away. Otherwise, it would feel unfair for the
player to shoot their gun from the opposite corner of the map and let every enemy
instantly know their location.

Attach a Branch node to the OnHearNoise (PawnSensing) node. Before continuing
with the nodes that will store the data about the noise event, we will first check
whether the noise has occurred close enough to the enemy to trigger our investigate
action. To evaluate this, we have to compare the location of the noise event detected
and the location of the enemy. We will accomplish this by setting up the vector
comparison shown in the following screenshot:

To figure out the location of the enemy doing the listening, create a Get Controlled
Pawn node. Then drag a wire out from the Return Value output pin and attach it
to a Get Nav Agent Location node. These two nodes will output the location of the
pawn object controlled by the AI controller we are currently editing.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[112]

We want to subtract the vector location of the enemy from the vector location
of the noise to get our distance, so drag a wire from the Location output pin of
OnHearNoise (PawnSensing), and attach it to a Vector - Vector node. Next, connect
the bottom input pin of the Vector - Vector node to the Return Value output pin
of Get Nav Agent Location. Drag a wire from the output pin of the Vector - Vector
node, and attach it to a Vector Length node. This will translate the vector length to
a float number.

We can now evaluate whether the float number calculated is less than the threshold
distance we want to define for the enemy's hearing range. Drag a wire from the
Return Value of the Vector Length node, and attach it to a Float < Float node.
Remember that, as with any arbitrary value that defines a property, you can create a
variable here to replace the number field and make it easier to adjust your threshold
at a later time. To do so, create a new variable of the float type, and give it a default
value that matches the number you want. I called this variable HearingDistance
and gave it a value of 1600, which worked well for the layout of my level. You may
need to adjust this value to be appropriate for your map and intended gameplay.
Attach your variable to the bottom input pin of the Float < Float node, or just type
in the value.

To complete the condition, attach the output pin of Float < Float to the Condition
input pin of the Branch node. This completes the steps we need to ensure that the
sound being heard is within the range to act upon. Now we need to store the data
about that sound in our Blackboard so that the Behavior Tree can access it. The
Blueprint nodes needed to accomplish this can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

Start by dragging a wire from the True output execution pin of the Branch node,
and attach it to a Set Value as Vector node. We need to fill in the three inputs for
this node to store data about our sound location. First, drag a wire from the Target
input pin, and attach it to a Get Blackboard node. Then drag a wire from the Target
input of Get Blackboard, and attach it to a Self node. Next, drag a wire from the
Key Name input of Set Value as Vector, and attach it to a Make Literal Name node.
Type LocationOfSound in the Value input, as we want to store the vector location
in the corresponding key in the Blackboard. Finally, drag a wire all the way from the
Location output pin of the OnHearNoise (Pawn Sensing) event node to the Vector
Value input pin of the Set Value as Vector node.

The last thing we need to do is store the information that a sound has been heard in
the Blackboard. Drag the output execution pin of Set Value as Vector out and attach
it to a Set Value as Bool node. Drag a second wire from the Return Value output
pin of the Get Blackboard node you used earlier to the Target input pin of Set Value
as Bool. Now drag a wire from the Key Name input pin out, and attach it to a new
Make Literal Name node. Inside this Value input, type HasHeardSound. Finally,
ensure that the Bool Value checkbox input of Set Value as Bool is checked in order
to designate that a sound has been heard. Wrap this entire series of nodes in a useful
comment container, compile, and save your work.

Adding noise to the player's actions
Now that we have modified our enemy AI to be able to detect sounds that are
broadcast to the listener, we need to create the Blueprint nodes that will trigger the
hearing response and attach them to player actions. This will give us the opportunity
to introduce additional risk-versus-reward choices. If firing the gun to take out an
enemy has the potential of alerting all nearby enemies of the player's presence and
location, then the player might think twice about choosing to open fire on the enemy
until they are sure that they have the advantage.

The PawnSensing component of EnemyController is able to detect noise only if it
is created from PawnNoiseEmitter. The existing sound effect that we play when
the player fires their gun will not trigger the enemy PawnSensing component. It
is important to know that the nodes that produce noise for pawn sensing have no
direct relationship with the sound a player hears. The noise exists only in terms of
producing an event that the AI can hear and respond to.

Open FirstPersonCharacter from the Blueprints folder under Content Browser.
Click on the Add Component button and add PawnNoiseEmitter. This component
must be added to an actor in order for noises it broadcasts to be detected by a pawn
sensor. We will now change two player abilities to produce detectable noise utilizing
this component, namely sprinting and shooting.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[114]

We will begin by adding noise to sprinting. We could have attached our
noise-producing node at the end of the block of nodes that triggers a sprint. However,
that would produce noise only one time per button push. Sprinting should logically
produce noise upon every footfall, as a repeated event, for as long as the player is
actively sprinting. Since we are actively draining the stamina of the player while they
are holding down the sprint button, we also have the opportunity to repurpose this
drain function to also repeatedly produce noise.

Start by finding the block of nodes that begins with the Sprint Drain custom event.
Drag a wire from the execution output pin of the Set Player Stamina node, and
attach it to a Make Noise (PawnNoiseEmitter) node. It is important that you choose
the version of Make Noise that is produced from the PawnNoiseEmitter component,
indicated by PawnNoiseEmitter showing in parentheses next to the node name in
the Executable actions search window. Only this version of the node will produce
noise that is detectable by the PawnSensing component of Enemy Controller.

With Make Noise (PawnNoiseEmitter) connected, drag a wire out from the Noise
Location input pin and attach it to a Get Actor Location node. Then drag a wire from
the Noise Maker input pin of Make Noise (PawnNoiseEmitter), and attach it to a
Self node. Finally, change the Loudness input field to 1. After editing the comment
around these nodes to reflect the new functionality, the final result should look like
this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

Next, we want to find the block of nodes that handles spawning of the projectile
when the player fires the gun. In Chapter 3, Creating Screen UI Elements, we added
a few nodes to the end of this sequence. They reduced the ammo count every time
a shot was fired. Find the Set Player Current Ammo node, and drag a wire from
its output execution pin to a Make Noise (PawnNoiseEmitter) node. Mimicking
the steps followed for the sprint noise, attach a Self node to the Noise Maker input
pin, attach a Get Actor Location node to the Noise Location input pin, and set the
Loudness input to 1. You have the option to use a second wire from the Return
Value output pin of the existing Get Actor Location node attached to Play Sound at
Location, rather than create a redundant node. This is shown in the next screenshot:

Compile, save, and click on Play to test your work. While behind an enemy or
otherwise outside their line of sight, sprinting or firing your gun should result in
the enemy approaching the position you were in when you made the noise. If they
establish line of sight with you during their investigation, they will begin heading
directly toward you.

Making the enemies destructible
With detection possible with both sight and sound, you might now find it difficult to
avoid being spotted by enemies. We will now turn our attention to the other side of
gameplay balancing, and equip the player with the means of combating the enemies.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[116]

Saving time by reusing existing Blueprint
content
Recall that in earlier chapters, we created enemy targets that the player could destroy
after a couple of hits with a projectile. We want to give the player a similar ability to
mitigate the threat provided by our new enemies. To do so, we can repurpose the
Blueprint nodes we already created to handle damage taking and destruction.

Navigate to Content Browser, go inside the Blueprints folder, and open
CylinderTarget_Blueprint. In the Event Graph, find the sequence of nodes that are
triggered by the Event Hit node. Click and drag a selection box around every node
in this sequence, ensuring that you don't miss any connected nodes. With all the
nodes in this sequence selected, right-click on any one of the nodes and select the
Copy option, as shown here:

With the nodes copied, return to the Content Browser and open EnemyCharacter
inside the Enemy folder. Navigate sufficiently far away from other nodes to give
yourself plenty of room, and then click on the Ctrl (PC) or command (Mac) plus V
keys to paste the previously copied Blueprint nodes in this event graph. If you try
compiling now, you will see a few errors and warnings appear on some of the nodes,
as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

The errors you see are present on nodes that relied on components and properties
of the target cylinder Blueprint but to which we no longer have access inside the
EnemyCharacter Blueprint, most notably the Primed variable. The concept of
priming an enemy before defeating them doesn't translate well in humanoid enemies
anyway, so delete the Get Primed and Set Primed nodes, as well as the Set Material
node attached to the False output execution pin of the Branch node. We will be
replacing the primed concept with a more traditional health tracking system.

We will need a variable to track enemy health as damage is applied. From the My
Blueprint panel, create a new variable called EnemyHealth. Change its type to
Integer, and check the Editable box. Finally, change its default value to the number
of hits you would like each enemy to take before being killed. In my example, I chose
to set this value to 3. Next, we will use this variable to check whether a hit should
destroy the enemy or simply reduce its health by one. The nodes used to handle this
branch logic are shown in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[118]

First, we need to determine the conditional node that will branch whether or not
an enemy is destroyed by a hit. Because we will want the enemy to be destroyed
when they reach zero health, we can make a comparison between the existing enemy
health, and the integer 1. Moreover, because this evaluation happens before health is
reduced, and each hit is going to reduce health by one, we know that receiving a hit
with 1 health or less remaining will result in the enemy health being 0.

Put this reasoning into practice by finding the Branch node that is led to by the Cast
to FirstPersonProjectile node. Drag a wire from the Condition input of this node,
and attach it to an Int <= Int node. Drag the EnemyHealth variable onto the top
input pin of this node, and type 1 in the bottom input field.

Next, we need to decrease EnemyHealth by 1 each time the enemy is hit with a shot
but is not destroyed. Drag a wire from the False output execution pin of the Branch
node, and attach it to a Set Enemy Health node. Now connect the Enemy Health
input pin to an Int - Int node. Finally, drag the EnemyHealth variable onto the top
input pin of Int - Int, and type 1 in the bottom input field.

From now on, when the player shoots an enemy a number of times equal to the
value given to EnemyHealth, they will explode and be destroyed similarly to how
the cylinder targets behaved in earlier chapters. Compile, save, and press Play
to see this in action.

Spawning more enemies during gameplay
Now that we are able to destroy enemies, we need to again ramp up the difficulty
for the player. To do so, we are going to spawn new enemies in the level as the
player is playing the game. In this way, the game can continue if the player destroys
the first few enemies, and if they are too slow to defeat enemies, the difficulty will
gradually increase.

Choosing a spawn point where enemies
will appear
First, we must decide where our enemies will be spawning in the level. We will be
spawning enemies in random spots within a circular distance from an object placed
in the level. Return to the level editor by clicking on the FirstPersonExampleMap
tab. Find the PatrolPoint1 object in the World Outliner panel. Duplicate the object
by right-clicking on it, selecting Edit, and then selecting Duplicate. Rename the new
object to SpawnPoint. Move the SpawnPoint object close to the center of your level,
ensuring that it is located a bit off the ground in a player- and enemy-accessible area.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

We will be placing the Blueprint nodes that will create new enemies inside the
Level Blueprint. A Level Blueprint is a special Blueprint that is tied to the entire
level, serving as a global event graph. They are especially well suited for setting up
level-specific items, such as enemy placements and door behavior. To edit the Level
Blueprint, click on the Blueprints button in the level editor toolbar and select the
Open Level Blueprint option.

Managing spawn rates and limits with
variables
Rather than relying on the placement of enemies in a level on a set patrol, we are going
to be gradually spawning those enemies in the level to present a more aggressive
threat to the player. As a consequence, we will want to set up our spawning logic to
trigger repeatedly in a loop, with the time between spawns determined by a variable.
In the My Blueprint panel, add a new variable called SpawnTime. Set its type to Float,
make it editable, and set the default value to 10.0 for a 10-second spawn rate.

In addition to setting the spawn rate, we will also want some form of limiter on the
spawning of enemies. Without this, an enemy would spawn every 10 seconds until
the game ends, potentially filling the map with dozens of enemies. To prevent this,
we will create an additional variable to set a cap on the number of enemies. Create
another variable and call it MaxEnemies. Set the variable type to Integer and make
it editable. I set the default value of MaxEnemies to 5, but you can set the number
as high or as low as you think is the appropriate maximum number of enemies that
your level can support.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[120]

In order for MaxEnemies to function as a cap on the number of enemies present
in the level, we need a way of keeping track of the current number of enemies.
To do this, we will temporarily leave the Level Blueprint, and instead open the
FirstPersonCharacter Blueprint, found in the Blueprints folder of Content Browser.
Inside FirstPersonCharacter, create a new variable called CurrentEnemyCount. Set
its type to Integer and ensure that Editable is checked.

Level Blueprints can receive information from other Blueprints through
casting, but there is no easy way to get information stored in a Level
Blueprint and use it in other Blueprints. As a consequence, any variable
you make that is likely to be affected by actions in other Blueprints, such
as the CurrentEnemyCount variable, is better placed outside of the Level
Blueprint. In this case, we are storing it with the rest of our game data
information on the player object.

Now that we have a variable to track the current enemy count, we need to decrease
this value whenever an enemy is destroyed. Recall that the Blueprint nodes
managing enemy destruction are located in the EnemyCharacter Blueprint. Open the
Enemy folder in Content Browser, and then open the EnemyCharacter Blueprint.

In the EnemyCharacter Blueprint, locate the series of nodes that are triggered
by the the Event Hit node. Near the end of this node sequence, find the Cast to
FirstPersonCharacter node. Create some additional space between the Set Target
Kill Count node and the Branch node, and break the connection between their input
and output execution nodes. Drag a wire out from the As First Person Character
output pin of Cast to FirstPersonCharacter, and attach it to a Set Current Enemy
Count node. Drag a wire from this node's Current Enemy Count input pin to an
Int - Int node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

Now drag another wire from the As First Person Character output pin of Cast to
FirstPersonCharacter, and attach it to a Get Current Enemy Count node. Attach this
node to the top input pin of the Int - Int node, and fill in the bottom input field with
1. Next, connect the Set Target Kill Count node to the input execution pin of Set
Current Enemy Count. Finally, connect the output execution pin of this node to
the Branch node.

Now that we have established variables to determine the spawn rate and cap the
number of enemies in a level, we should return to the Level Blueprint. Click on
the tab with a Blueprint icon that is labeled FirstPersonExampleMap.

Spawning new enemies in the Level Blueprint
Back in the Level Blueprint, turn your attention to the event graph. We will want
to initiate the spawning logic as soon as the game is played and in a loop after
every few seconds at a rate determined by the SpawnTime variable. Add an Event
Begin Play node to the event graph, and attach it to a Set Timer node. Drag the
SpawnTime variable onto the Time input pin, and check the box next to the Looping
input pin. Finally, type Spawn inside the Function Name input field. We will be
creating a custom Spawn function that will be called on each pass through this loop.
Remember to create a comment around these nodes as a reminder to the function
of this loop.

Now add a Custom Event node to empty grid space by searching for and selecting
Add Custom Event…, and rename the node to Spawn. Drag a wire from the Spawn
node and attach it to a Cast to FirstPersonCharacter node. Now attach the output
execution pin of this node to a Branch node.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[122]

Drag a wire out from the Object input node of Cast to FirstPersonCharacter, and
attach it to a Get Player Character node. Then, drag a wire from the As First Person
Character output pin, and attach it to a Get Current Enemy Count node. Drag out
the Current Enemy Count output pin of this node and attach it to an Int < Int node.
Next, drag the MaxEnemies variable onto the bottom input pin of this node. Finally,
drag a wire out from the Condition input pin of the Branch node, and attach it to the
Int < Int node's output pin. Your nodes should now match the following screenshot:

The next step is to actually spawn an enemy. To do this, drag a wire out from the
True output execution pin of the Branch node, and attach it to a Spawn AIFrom
Class node. This node is custom built to spawn new AI objects, and requires you to
designate a pawn and a Behavior Tree. Select Enemy Character from the drop-down
menu on the Pawn Class input pin, and select EnemyBehavior for the Behavior Tree
input. Now we need to get random locations and rotations for the remaining inputs of
this node. The Blueprint nodes used to accomplish this can be seen in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

Start by switching tabs back to the level editor. Inside the World Outliner panel of
FirstPersonExampleMap, click on the SpawnPoint object so that it is highlighted.
With SpawnPoint selected, return to the Level Blueprint tab. Far to the left of
the other nodes, right-click in empty grid space, ensure that Context Sensitive is
checked, and select the Create a Reference to SpawnPoint option. Attach the node
that appears to a Get Actor Location node. Then, attach the Return Value output
pin of this node to a Get Random Point in Radius node.

Get Random Point in Radius takes a location as an input and returns a random
location within a designated distance away as an output. Set the Radius input of this
node to a high number. I found 1000.0 to be an appropriate number to make the
most of my level available for spawning. Attach the Return Value output pin to the
Location input of the Spawn AIFrom Class node.

Next, drag a wire from the Rotation input pin of Spawn AIFrom Class, and attach
it to a Make Rot node. This node converts three Float inputs into a rotation value.
We only want to choose a random rotation for our spawned enemies in the Yaw axis,
so drag a wire from the Yaw input pin and attach it to a Random Float node. The
final input for the Spawn AIFrom Class node, No Collision Fail, enables or disables
a built-in check to see whether or not the intended spawn location of the actor is
blocked by the collision of another object. If the check fails, which means that the
actor would be spawned partially inside another object, the actor will fail to spawn.
Since we want to ensure that our enemies are not spawning inside other objects, we
will leave this input unchecked, ensuring that this test happens. Create a comment
container around this series of nodes, describing its utility for finding random
rotation and locations near the spawnpoint object.

The final step is to increase the enemy count each time an enemy is spawned. Drag
a second wire out from the Cast to FirstPersonController node, and attach it to a
Set Current Enemy Count node. Move this node to the right of the Spawn AIFrom
Class node, and connect the two execution pins. Now drag a second wire out from
the Get Current Enemy Count node near the casting node, and attach it to an Int
+ Int node. Change the bottom input field to 1, and move the node to the right of
Spawn AIFrom Class. Attach the output pin of the Int + Int node to the Current
Enemy Count pin of the Set Current Enemy Count node.

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[124]

After adding a descriptive comment to these nodes, the result should look like this:

Compile, save, and click on Play to test your enemy spawning. Based on what you
have set your spawn rate to and where you have placed your spawn point, you
should regularly see new enemies appear as you run the game. You will notice,
however, that the enemies are not moving once spawned unless they hear or see the
player. This is because they are not being created with an established patrol point to
pursue. Rather than adding patrol points to our spawned enemies, we will be taking
our new appreciation of randomness and adding it to our enemy navigation behavior.

Creating enemy wandering behavior
Previously, we set the default behavior for enemies as a patrolling movement
between two points. While this worked well as a test bed for our hearing and seeing
components, and would be appropriate for a stealth-oriented game, we are going
to ramp up the challenge and action of this game's experience by replacing this
behavior with random wandering. This will make avoiding enemies significantly
harder, encouraging more direct confrontations. To do this, we are going to return to
the EnemyBehavior Behavior Tree. Open EnemyBehavior from the Enemy folder in
the Content Browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[125]

Identifying a wander point with a custom task
Once you've opened EnemyBehavior, click on the Blackboard tab. We need to
create a key that will store the location of the next destination that the enemy should
wander to. Unlike the PatrolPoint key, our destination won't be represented by an
in-game actor, but rather by vector coordinates. Create a new key in the Blackboard
panel now, and call this key WanderPoint. Change Key Type to Vector. Now click
on the Behavior Tree tab to return to the Behavior Tree.

In the Behavior Tree, we can remove two of the sequences we have already
established to handle moving between patrol points and idling. Select the Patrol
and Idle sequence nodes, along with their attached task nodes, and delete them.
Now drag a wire out from the Selector node and attach it to a new Sequence node.
Rename this node to Wander, and move this node to the right of both the Attack
Player and Investigate Sound sequences.

The first task of our Wander sequence will be to determine where in the level the
enemy should be wandering. For this, we will need to create another custom task.
Click on the New Task button and select the BTTask_BlueprintBase option from
the drop-down menu. Return to Content Browser and find the new task object
called BTTask_BlueprintBase_New in the Enemy folder. Rename this task object to
FindWanderPointTask. Double-click on FindWanderPointTask to open the Event
Graph editor for the new task.

We will be setting up nodes that will grab the location of the enemy actor and
generate a random point within a radius around that location. This point will then
be stored as our wander point. The nodes used to accomplish this can be seen in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[126]

First, we need to create a variable within this task that will allow us to establish a
reference to a Blackboard Key. Add a new variable and call it WanderKey. Set the
type to BlackboardKeySelector and make sure that the Editable checkbox is selected.

Now add an Event Receive Execute node to the event graph. Drag a wire from the
Owner Actor output pin and attach it to a Cast to AIController node. Then attach
the two nodes' execution pins. Now that we have access to the AI Controller, we
can access its controlled actor's location. Drag a wire out from the As AIController
output pin of the casting node, and attach it to a Get Controlled Pawn node. Next,
drag a wire out from the Return Value output pin of this node, and attach it to a
Get Actor Location node.

With the enemy actor location in hand, we can now generate the random location
that will serve as our wander point. Drag a wire out from the Return Value output
pin of Get Actor Location, and attach it to a Get Random Point in Radius node. Set
the Radius value of this node to a large number that should cover most or all of your
level. I set mine to 10000.

Next, we need to store this vector in the Blackboard. Drag a wire out from the Return
Value output of Get Random Point in Radius, and attach it to a Set Blackboard
Value as Vector node. Drag the WanderKey variable onto the Key input of this
node, and then attach the input execution pin to the output execution pin of the
Cast To AIController node. Finally, drag a wire out from the output execution pin
of Set Blackboard Value as Vector, attach it to a Finish Execute Node, and check
the Success input box.

Add a descriptive comment around these nodes. Then compile and save this
Blueprint. Click on the EnemyBehavior tab to return to the Behavior Tree.

Adding wandering to the Behavior Tree
Now that we have our custom task, we can make the task sequence that will cause the
enemy to find a wander point, move to it, and wait there for a brief period of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[127]

Start by dragging a wire out from the Wander sequence node, and attach it to your
new FindWanderPointTask task node. Click on the new node and change Wander
Key in the Details panel to WanderPoint. Also change Node Name to Get Next
Wander Point to be more explicit about its purpose. Then compile the Blueprint to
see the change in the node.

Drag another wire down from the Wander sequence node, and attach it to a MoveTo
task node. Click on this node and change Blackboard Key to WanderPoint. Move
this node to the right of the Get Next Wander Point node. Drag a third wire down
and attach it to a Wait task node, placing the node to the right of those other two task
nodes. In the Details panel, change Wait Time to 3.0 and Random Deviation to 1.0
to give the wait time a bit of variance. Now compile and save the Behavior Tree.

A few final modifications should be made before we test our work. Return to the
level editor by clicking on FirstPersonExampeMap. Any enemies you have manually
placed in the world can now be removed, as we now have an enemy spawner to
serve the function of creating our enemies. Find the enemy actors in World Outliner
and delete them by right-clicking on the object, selecting Edit, and then selecting
Delete. Now find the FirstPersonCharacter object and select it. In the Details
panel, scroll down until you see a list of the variables we attached to the character
Blueprint. Unless you created a custom category for these variables, they will be
listed under the Default category. From here, we can easily modify the game values
that determine player behavior and our win conditions. In this case, we want to
modify the Target Goal value to be higher so that the game can continue for a longer
period of time. I set this value to 20 so that the player must eliminate 20 enemies
before winning the game:

www.it-ebooks.info

http://www.it-ebooks.info/

Upgrading the AI Enemies

[128]

Now click on Play to run the game. You should see the spawned enemies choosing
paths in random directions and moving toward them. When an enemy reaches
their wander point, they will pause there briefly, before choosing another random
point and walking there. You will also notice that the enemies choose wander points
independent of one another. This is because each enemy has their own instance of
the Behavior Tree. Thus, every Behavior Tree task, such as the one we just created
to find a wander point, is running independently for each enemy. You will also
notice that because we chose to have higher-priority sequences abort lower-priority
sequences, anytime an enemy hears or sees the player, they will end their wander
movement and begin approaching the player or the location of the sound.

Summary
In this chapter, we started off on the path of creating a challenging but balanced
game experience by enhancing the capabilities of our AI-driven enemies. We gave
our enemies zombie-like behavior by allowing them to wander aimlessly around
the level until noticing the player by sight or sound. We also gave them the ability
to charge forward when they notice the player and launch a melee attack, lowering
the player's health. Then we gave the player the chance to fight back by attacking the
enemy, eventually destroying them once the enemy's health is depleted. Finally, we
gave new flexibility to our game by setting up a system to create new enemies as
the game is being played.

At this point, the core content of our game is nearly complete. You should feel
proud of the significant progress you have made! You can take some time to tweak
the many variables you have created to customize the gameplay to your liking,
or continue reading if you are ready to move on to the final systems. In the next
chapter, we will be adding the last components necessary for a full game experience.
We will end the game when the player runs out of health, create a round-based
advancement system, and create a save system so that the player can return to a
previously saved game state.

www.it-ebooks.info

http://www.it-ebooks.info/

[129]

Tracking Game States and
Applying Finishing Touches

In this chapter, we will be taking the final steps to evolve our game into a complete
and fun experience that challenges the player. First, we will introduce player
death, which is activated when the player's health is fully drained. Then, we will
introduce a round system that will elevate the challenge for the player by requiring
increasingly numerous enemies to be defeated as they progress through the rounds.
Finally, we will introduce a saving and loading system so that the player can leave the
game and later come back to the round they were last playing on. With these things
accomplished, we will have an arcade-style first-person shooter that a player can
continually return to for an increasingly difficult challenge. In the process, we will
cover the following topics:

• Branching menus based on player conditions
• Creating scaling difficulty with gameplay modifiers
• Supporting the game state being saved and reloaded at a later time
• Branching level initialization based on the save data
• Creating transition screens that display gameplay data

Making danger real with player death
During the last chapter, we made significant progress towards a balanced game,
in which enemies threaten the player but the player can use skill to overcome that
challenge. One missing component glaringly remains. If the player runs out of
health, they should not be able to continue progressing through the game. Instead,
we will be taking our learning from the win screen we created, and applying it to a
lose screen. This screen will enable the player to restart the level with full ammo and
a freshly filled health bar, but will also negate any progress they had made toward
reaching their target goal.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[130]

Setting up a lose screen
The lose screen will be presented when the player runs out of health. We will
present them with options to restart the last round or quit the game. You may
remember the win screen we created; we presented similar options there. Rather
than remake the UI screen from scratch, we can save some time by using our
WinMenu object as a template.

Go to the Content Browser and open the UI folder inside FirstPersonBp. Right-click
on WinMenu and select the Duplicate option. Name this new Blueprint widget
LoseMenu. Now open LoseMenu and select the text object showing You Win. Look
at the Details panel, and change the Text field under Content to You Lose. Try
Again?. Also change the Color and Opacity setting to a dark red color. Finally, you
may wish to change the Shadow Color setting's alpha value from 0.0 to 1.0 to
show shadows behind the text, as shown in this screenshot:

The two buttons can remain identical to their WinMenu counterparts in appearance
and functionality for now. Compile and save this Blueprint, and then return to the
Content Browser. Open FirstPersonCharacter inside the Blueprints folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

To track whether or not the player has lost the game, we will need to create a new
variable. From the My Blueprint panel, add a new variable called LostGame. In the
Details panel, set Variable Type to Boolean. With the variable created, find the
series of nodes we used to decrease the player's health, triggering off the Event
Any Damage node.

We will need to extend the set player health operation with a branch comparison
that will test whether the player's health is less than zero, and if so, set the LostGame
variable to false and end the game. The nodes used to accomplish this are shown
in the following screenshot:

Begin by giving yourself additional room to the right of the Set Player Health node.
Drag a wire from the output execution pin of this node to a Branch node. Then
connect the Condition input pin of the Branch node to a Float >= Float node. Leave
the top input field of this new node as 0.0, and connect the bottom input pin to the
output pin of the Set Player Health node.

Now, drag a wire from the True output execution pin of the Branch node, and
connect it to a Set Lost Game node. Check the Lost Game input pin box to set this
Boolean to True when the player runs out of health. Then, connect the Set Lost
Game node to an End Game node, which will call our previously created function
to show the win menu. The next step will be to edit the End Game function so that
it will show a lose menu if the function is called while the LostGame variable is set
to True.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[132]

Find the block of nodes that triggers off the End Game event, where we call our
WinMenu screen. After the nodes where we pause the game and enable the mouse
arrow, we are going to create a branch node that will test the LostGame variable,
as seen in the following screenshot:

Start by breaking the connection between the Set Show Mouse Cursor and the
Create WinMenu_C Widget nodes, and drag the widget and viewport nodes to the
side for now. Then connect the Set Show Mouse Cursor node to a new Branch node.
Next, drag the LostGame variable onto the Condition input pin of the Branch node.
The next step will be to create and display Lose Menu when LostGame is True and
Win Menu when it is False, as seen in this screenshot:

Drag a wire from the True output execution pin of the Branch node, and connect it to
a new Create Widget node. Inside this node, select Lose Menu from the Class input
drop-down menu. Then drag a wire from the Return Value output pin to an Add
to Viewport node. Finish the True branch by attaching the viewport node to a Set
Lost Game node, and ensure that the Lost Game input checkbox is left unchecked.
This step is necessary to ensure that the game won't mistakenly think that the player
has already lost if they restart or resume playing later. Finally, reconnect the create
widget and viewport nodes you dragged aside earlier to the False output execution
pin of the Branch node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

Compile, save, and click on Play to test your work. If you stand next to an enemy
long enough for it to drain your health to zero, you should now see the lose menu
we created.

Creating round-based scaling with
saved games
We now have a game that supports a full play experience. The game can be won
with the appropriate application of skill, but can also be lost by getting overwhelmed
by the intelligent enemies we created. However, the gameplay experience is limited
to the number of enemies we have set as our target goal. This results in the game
feeling shallow. To address this, we can adopt techniques used by arcade games,
which increase the difficulty of the game as the player progresses through a series of
rounds. This is a way to add depth and fun to your game using the existing assets,
without requiring the creation hours of custom content.

The rounds we create will serve as the score of the player. The higher the round they
reach, the more the player is thought to have achieved. To ensure that the maximum
round the player reaches is limited only by their skill, rather than the amount of
time for which they play the game in a single setting, we will be implementing a save
system so that the player can pick up from where they left off if they leave the game
and come back to it later.

Storing game information using a SaveGame
object
The first step we need to perform in order to create a save system is to create a
new kind of Blueprint that will store the game data that we want to save. Go to the
Content Browser and open the Blueprints folder. Click on the Add New button,
select Blueprints, and then click on Blueprint Class. In the window that appears,
search for and select SaveGame to create a new Blueprint of that class. Name this
Blueprint SaveSystem, and double-click on it to open the Blueprint.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[134]

This Blueprint will contain our variable stored for the saved data:

In our case, we are going to be implementing a series of increasingly difficult rounds,
so we will want to track which round the player was on before they quit the game.
We do not need to store any data on how many enemies the player has killed,
because it would make more sense to the player for each game session to start at
the beginning of a round. To track the current round, create a new variable called
CurrentRound from the My Blueprint panel. Change Variable Type to Integer,
mark the variable as Editable, and ensure that its default value is set to 0. That's all
we need to do in SaveSystem. Compile and save the Blueprint now.

Storing and loading the saved data when
starting the game
Now that we have a container for our saved data, we need to ensure that the data is
stored somewhere on the player's machine, and that it is retrieved when the player
returns to the game. We also want the saved data to be updated each time the level
loads, because we will be increasing the current round number each time the player
wins a round. Like the rest of our gameplay settings, we will be adding this process
to the FirstPersonCharacter Blueprint. Go to the Content Browser, open the
Blueprints folder, and open FirstPersonCharacter now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

In addition to the SaveSystem Blueprint, which will store information about what
gameplay data to save, we are going to need a save game object that will actually
contain the particular data for that user. To easily reference this save data, we will
save it in a variable that we can reference throughout FirstPersonCharacter.
From the My Blueprint panel, create a new variable called SaveGameInstance. In
the Details panel, click on the Variable Type drop-down menu and search for Save
System. Select the Save System option to allow this variable to contain an instance of
the save system Blueprint that we just created, as shown in the following screenshot.
This variable does not need to be editable, and you should leave the default value
to None.

Now find the block of Blueprint nodes that draws the HUD on the screen when the
gameplay begins, triggering off the Event Begin Play node. Similarly to what we did
with the win menu sequence, break the connections between Event Begin Play and
the Create HUD_C widget. Then drag the widget node and its connections to the
side to make room for a significant number of new nodes. Back at the Event Begin
Play node, drag a wire out from its output execution pin, and attach it to a Does
Save Game Exist node.

When the game begins, we are going to use Does Save Game Exist to check for the
existence of a "save game" file that features the save slot and user we specify in the
node. We are going to be saving our data in a single save slot only, so each save
operation will overwrite the previously saved data. Additionally, we will not be
creating a user system for our game, so anyone playing the game on a particular
machine will be assumed to be the only player. A Branch node will direct the game
operations, depending on whether or not a saved game is found. If no saved game
exists, a new save game object will be created. If one already exists, we will load the
saved data from it.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[136]

The nodes used to accomplish this can be seen in this screenshot:

First, we must determine what our save game slot is going to be called. In the Slot
Name input field of Does Save Game Exist, type BlueprintGameSave. Leave the
User Index input at 0. This combination asks the player whether there is a saved
game by the first user in the user index, which will be our only user, and in the
save slot called BlueprintGameSave, which will be our only save slot. Next, drag
a wire from the Return Value output pin of Does Save Game Exist, and attach it
to a Branch node.

Whenever you are constructing a complex system, like our "save" structure,
it is wise to use the Print String nodes, as shown in the previous screenshot,
to evaluate during gameplay that your Blueprint logic is behaving the way
you think it should. In the preceding case, we are finding out whether or
not a saved game was found and printing the result.

From the Branch node, we will be creating a path to load content from a saved
game, and another path to create a save game file. Drag a wire from the True output
execution pin of the Branch node. If you wish to see a debug message printed on the
screen when a saved game is supposed to be loaded, you can first route the True path
of the Branch node through a Print String node, as seen in the preceding example. But
this is not necessary to make the "save" system function. Whether or not you choose
to use a Print String node, ensure that the Branch node is connected to a Load Game
from Slot node, and enter BlueprintGameSave in the Slot Name input field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

Next, drag a wire from the False output execution pin of the Branch node. You
again have the choice of attaching it to a Print String node to aid in debugging,
or just attaching it directly to a Create Save Game Object node. Within this node,
click on the Save Game Class input dropdown, and select Save System from the
options presented.

Now we need to ensure that the save data, whether we just created it or are loading
it from an existing file, is stored inside our SaveGameInstance variable. This can be
accomplished through casting, as seen here:

Start by dragging a wire from the Return Value output pin of the Load Game from
Slot node, and attach it to a Cast to SaveSystem node. Also connect the execution
pins of these two nodes. Then drag the SaveGameInstance variable onto the As Save
System output pin of the casting node to both create and attach a Set Save Game
Instance node.

Next, attach the same variable-data storing nodes in the branch where we are creating
a new save game object. Drag a wire from the Return Value output pin of the Create
Save Game Object node, and attach it to a new Cast to SaveSystem node. Connect
the execution pins between these nodes, and then drag the SaveGameInstance
variable onto the As Save System output pin of Cast to SaveSystem.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[138]

With our save game object created and stored in a variable, we need to save this data
in a file that will be stored on the player's machine. Drag a wire from the output pin
of the Set Save Game Instance node we just created, and drop it onto a Save Game
to Slot node. Inside this node, enter BlueprintGameSave in the Slot Name input
field. This will complete the steps necessary to create or load a save file when the
game starts playing. Select all of these nodes and wrap them in a comment box
to leave for yourself a note about their functionality.

Increasing the enemy target goal
Our next goal is to take advantage of the data we can store in the save file to change
the gameplay for the player as they progress. We will do this by extracting the
current round from the save file, and multiplying the number of enemies that need
to be defeated to complete a round by a new multiplier variable we will create. This
is shown in the following screenshot:

Begin by creating a new variable in the My Blueprints panel, and rename it to
RoundScaleMultiplier. Change its Variable Type to Integer, and set the default
value to a low number, such as 2. With a multiplier of 2, each round will add two more
enemies that need to be defeated before the player can progress to the next round.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[139]

Now that we have a multiplier variable, we will multiply it with the current round
information stored in the save file, and use the result for TargetGoal. First, drag a wire
from the Save Game to Slot node's output execution pin, and attach it to a Set Target
Goal node. Also, connect the output execution pin of the Set Save Game Instance
node that ends the loading sequence to the same Set Target Goal node so that both
the save object creation and save object loading branches end on the same node.

Next, drag a wire from one of the Set Save Game Instance nodes' output pins,
and attach it to a Get Current Round node. Attach the output pin of this node to
an Integer * Integer node. Then drag the RoundScaleMultipler variable onto the
bottom input pin of the newly created Integer * Integer node. Finally, attach the
output pin of this node to the input Target Goal pin of Set Target Goal. Even though
these nodes are connected to our save creation and loading logic, scaling the target
goal is a relatively independent function that happens to trigger off the same event.
As such, select all four nodes that you just created and give them their own comment
box in order to leave you with a reminder of their purpose.

The final step for establishing our game initialization logic is to reconnect the HUD
creation and drawing nodes, along with the connected stamina recharge timer, to
the sequence we have just concluded. Connect the output execution pin of the Set
Target Goal node to the Create HUD_C Widget node's input execution node,
as seen in this screenshot:

Create a transition screen to be shown
between rounds
Currently, when the player defeats enough enemies to meet the requirements
displayed by TargetGoal, they are presented with a win menu. It congratulates them
and offers the opportunity to restart the game or quit out of the application. Now that
we are adopting a round-based gameplay, we want to replace this win menu with a
transition screen that will bring the player into the next round of gameplay.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[140]

We will start by making substantial modifications to our WinMenu Blueprint widget.
Go to the Content Browser and open the UI folder. Rename the WinMenu Blueprint
to RoundTransition so that it more accurately reflects its new purpose. Now open
the RoundTransition Blueprint.

First, go to the Hierarchy panel and select the Quit Button object. Delete this button,
as we will not need to present an option to quit during the round transitions. Next,
click on the Restart Button object, and rename it to Begin Round Button. Click on
the Text object nested underneath the button object, and in the Details panel, and
change the text from You Win! to Begin Round. Finally, move this button to the
lower-middle part of the canvas.

After that, select and delete the You Win! text block object. From the Palette panel,
search for and drag down a new Horizontal Box object. Name this box Round
Display. Back in the Palette panel, search for a Text object, and drag two of them
down to the Hierarchy panel, placing them both on top of the Round Display
object we created.

Select the first of these Text objects, and look at the Details panel. Change the Text
field to Round, including the space. Also change the font size to be 150. Now select
the other Text object. Change its font size to 150 as well, and change its Text field
to any two-digit number. Finally, select the parent Round Display object again, and
resize the box until both the round text and the two-digit number can be seen fully.
Place this object above the Begin Round button on the canvas. The final result of
this layout should resemble the following screenshot:

Now we need to add behavior to this screen. Because the Begin Round button is
merely a renamed version of the old Restart button, and we want the functionality of
reloading the level to remain the same, we can leave this button alone. The additional
binding behavior we need is to adjust the round number to match the round stored
in the current save file. To start this process, click on the number text object, shown
as 10 in the preceding screenshot, and then click on the Bind button next to the Text
field in the Details panel. Next, click on the Create Binding option.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

Our goal for this binding is to extract the current round from the saved game and
show it on the screen in the form of text. The nodes used to accomplish this can be
seen in the screenshot that follows:

The current round is accessible through the save game instance variable attached to
our player character, so we must first cast to that Blueprint to extract the save game
information. Attach a Cast to FirstPersonCharacter node to the initial Get Text 0
node, and then connect the output execution pin of that node to the ReturnNode that
concludes this binding. Now drag the Object input pin of the casting node out, and
attach it to a Get Player Character node.

With the player character referenced, we drag a wire from the As First Person
Character output pin, and attach it to a Get Save Game Instance node. Then attach
the output pin of this node to a Get Current Round node. With this information
in hand, we can convert the data to text. Attach the output pin of the Get Current
Round node to the Return Value input pin of ReturnNode, and a To Text (Int)
translation node will be created for you automatically. Compile and save the
RoundTransition Blueprint to finish your work here.

Transitioning to a new round when the current
round is won
Now that we have a transition screen to display, we want to integrate it into our end
game sequence, and combine it with the nodes that will increment the round each
time the player beats their target goal. Return to the FirstPersonCharacter Blueprint,
located inside the Blueprints folder of the Content Browser, to start working toward
this goal.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[142]

Find the sequence of nodes you modified to branch between the win and lose menus
that are triggered by the End Game event. From the Branch node, delete the Create
WinMenu_C Widget and Add to Viewport nodes that are attached to the False
output execution pin. We will be replacing these with nodes that increase the round
by one and save that new round number in the save file, before displaying the
transition screen. The Blueprint nodes meant for calculating and saving the current
round number can be seen in the following screenshot:

Begin by dragging and dropping the SaveGameInstance variable onto the grid
below the Branch node, and then selecting the Get option from the menu that
appears. Then drag a wire out from this node and attach it to a Set Current Round
node. Attach the input execution pin of this node to the False output execution pin
of the Branch node. Next, we need to calculate the integer that will be set as the
current round.

Drag a second wire from the Get Save Game Instance node and attach it to a Get
Current Round node. Now attach this node to an Integer + Integer node. Fill in
the bottom input field with the number 1, and then attach the output pin of this
node to the Current Round input pin of Set Current Round node. Finally, store
this information in the save file by dragging a third wire from the Get Save Game
Instance node and attaching it to a Save Game to Slot node. Attach the input and
output execution pins of this node and the Set Current Round node, and then fill
in the Slot Name input field with BlueprintGameSave.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[143]

Next, we need to call the round transition screen we created and draw it on the
viewport, as seen in this screenshot:

Attach a Create Widget node to the Save Game to Slot node, and select Round
Transition from the Class input drop-down menu. Then drag a wire from the
Return Value output pin of this node and attach it to an Add to Viewport node.
Finalize this sequence by ensuring that the execution pins of the Create Widget and
Add to Viewport nodes are connected. We are now ready to test whether our round
system is functional. Compile and save this Blueprint, and click on the Play button
to test.

When you load the game, you should notice that the target goal counter at the top
of the game has a low number of enemies as the goal. Defeat the number of enemies
indicated by the goal and you should see the round transition screen appear,
displaying Round 2. When you press the Begin Round button, you will be reloading
the level, with your health and ammo restored, but with a higher number of enemies
as the target. Defeat the number of enemies shown by the new target, and then you
should be presented with the Round 3 transition screen. Finally, if you quit the game
and then click on the Play button again, you should find that the game loads the
round that you were last on.

Pausing the game and resetting the
save file
Now that we have the ability to track the player's progress, we should offer them the
ability to reset their save file if they wish to begin the game from the start. We can
accomplish this through the addition of a pause menu, which has the added benefit
of allowing the player to take a temporary break in the action.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[144]

Creating a pause menu
First, we will create a pause menu that will present the player with options to resume
playing the game, reset the game to round one, or to quit the application. Begin by
going to the UI folder in the Content Browser. Right-click on LoseMenu and select
the Duplicate option. Rename this new Blueprint widget to PauseMenu and open it.

Select the text displaying You Lose. Try Again?, and in the Details panel, change
the Text field to say Paused…. Change the text color to a color you feel is appropriate
for a pause message. Now select the Restart button's text object, and change the Text
field to Resume.

Next, we will add a third button to allow the player to reset the save file. From
the Palette panel, drag down a Button object into Hierarchy, dropping it onto the
CanvasPanel object. Rename the button object to Reset Button. Then drag a Text
object down from Palette and drop it onto Reset Button.

Select the text object on Reset Button, and change the Text field to Reset All. Also
change the font size to 60, change the font color to black, and set Justification to
center alignment. Now click on the Reset Button object, and in the Details panel,
change the Size X field to 400.0 and the Size Y field to 150.0. Next, select the
other two buttons and change their x and y sizes to the same values.

Now arrange all the three buttons along the center of the canvas, inserting the Reset
All button between the Resume and Quit buttons. The final layout should resemble
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[145]

Resuming and resetting the save file
The next step is to modify the functionality of the pause screen buttons so that
they can properly resume the game or reset the save file on the player's machine.
Click on the Reset All button, and in the Details panel, click on the + button next
to OnClicked to create a new button event. We will start by setting up the series of
nodes needed to resume the game from a paused state, as seen in this screenshot:

In the Graph view, delete the Open Level node attached to the resume button event,
and then connect the Remove from Parent node directly to the OnClicked (Resume
Button) node. In addition to removing the pause menu when Resume is clicked on,
we need to resume the game and disable the mouse arrow.

Create a new Get Player Controller node. Drag a wire from the Return Value output
pin of this node and attach it to a Set Show Mouse Cursor node. Ensure that this
node's Show Mouse Cursor input checkbox is unchecked, and attach the input
execution pin of this node to the output execution pin of the Remove from Parent
node. Finally, attach the output execution pin of the Set Show Mouse Cursor node
to a Set Game Paused node, while ensuring that the Paused input checkbox is left
unchecked. That will complete the functionality of the Resume button.

Now turn your attention to the OnClicked (Reset Button) node. We will first be
checking for the existence of a save game to be reset, and if one is found, we will use
the player character to set the new save data. The nodes needed to handle the save
game branch and player character casting can be seen here:

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[146]

Drag a wire from the output execution pin of the OnClicked (Reset Button) node,
and attach it to a Does Save Game Exist node. In the Slot Name input of this node,
type BlueprintGameSave, ensuring that your spelling is consistent with the slot
names given in the core logic within FirstPersonCharacter.

Next, drag a wire from the Return Value output pin and attach it to a Branch
node. Attach the True output execution pin of the Branch node to a Cast To
FirstPersonCharacter node. Finally, drag a wire from the Object input pin of
the casting node and attach it to the Get Player Character node.

Now that we have the player character, we need to grab its save game instance and
reset the current round to the first round. We will then need to save this updated
save game information to the BlueprintGameSave slot on the player's machine.

Stat by dragging a wire from the As First Person Character output pin of the Cast To
FirstPersonCharacter node and attaching it to a Get Save Game Instance node. Next,
drag a wire from the output pin of this node to the Set Current Round node. Ensure
that the execution pins between this node and the Cast To FirstPersonCharacter node
are connected, and set the input Current Round field to 1. Because the only data we
intend to persist across play sessions is the current round the player is on, this is the
only information we need to overwrite to represent a fresh save game.

Now we need to ensure that our updated round data is actually stored in the player's
machine. Drag a second wire from the output pin of the Get Save Game Instance
node, and attach it to a Save Game to Slot node. Connect the input execution pin
of this node to the output execution pin of the Set Current Round node, and write
BlueprintGameSave for the Slot Name input field. The results of this should look
like what is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[147]

The final step for our Reset button is to reload the game map and remove the pause
menu at the end of the sequence, as shown in this screenshot:

Drag a wire from the output execution pin from the Save Game to Slot node to
an Open Level node. Then look all the way back to the Branch node described
earlier, drag a wire from the False output execution pin of that node, and connect
it to the Open Level node. This will ensure that even if there is no save game data
to overwrite, the button will still give some feedback by starting the game with the
first round. For the LevelName input field of the Open Level node, enter either
FirstPersonExampleMap or the name of your level, if you have chosen to rename it
differently from our example. Finally, connect a wire from the output execution pin
of the Open Level node to a new Remove from Parent node. Congratulations! That
concludes our work on the pause menu functionality. Create a helpful comment for
the reset button nodes, and then compile and save the Blueprint to finish.

Triggering the pause menu
Now that we have created our pause menu, we need a way for the player to bring
up the menu. Traditionally, computer games use the Esc key to pause the game and
return to a menu, so we will follow that trope here. First, we will bind the Esc key
to a pause action. Just as we did back in Chapter 2, Enhancing Player Abilities, we
will be adding a new action mapping inside Project Settings. On the Edit button
in the Unreal Editor menu, select the Project Settings option. On the left side of the
window that appears, look for the Engine category and select the Input option.
Click on the + sign next to Action Mappings, and call the mapping Pause. Use
the drop-down menu to select the Escape Key mapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[148]

Like all other actions the player can take, we want to establish the functionality of
this action within the FirstPersonCharacter Blueprint. Go to the Content Browser
and open the FirstPersonCharacter Blueprint inside the Blueprints folder. You
can see the nodes we will be building to bring up the pause menu in the following
screenshot:

First, find some empty grid space and add an InputAction Pause event node.
Since bringing up the pause menu will disrupt the gameplay, it will feel better if
the action is taken only when the user releases the Esc key, as opposed to when they
first press it. Drag a wire from the Released output pin of the Escape node, and
attach it to a Set Game Paused node. Ensure that the Paused input checkbox of
this node is checked.

With the game paused, we need to enable the mouse arrow so that the player can
click on the menu buttons. Start by creating a Get Player Controller node, and drag
a wire from its Return Value output pin to a Set Show Mouse Cursor node. Check
the Show Mouse Cursor input box to set the mouse arrow to appear on the screen.
Afterwards, connect the input execution pin of this node to the output execution pin
of the Set Game Paused node.

With the game paused and the cursor enabled, we can bring up the Pause Menu
UI we created. Drag a wire from the output execution pin of the Set Show Mouse
Cursor node and attach it to a Create Widget node. Select Pause Menu from the
Class input drop-down menu. Then, drag a wire from the Return Value output pin
of this node and attach it to an Add to Viewport node. Connect the execution pins
between these two nodes to finish this series of nodes. Remember to add a helpful
comment container around the nodes, and then compile and save this Blueprint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[149]

We will have to make a slight alteration to our testing strategy to test the pause
menu. The Esc key, by default, closes any active windows currently playing the
game within the editor. Thus, the game would close before we could see the pause
menu we created. There are two ways by which we can get around this. We can
change the key to bring up the pause menu to something other than Esc, such as
the P key. Alternatively, we can change the Play mode in the editor to generate a
standalone game window. To follow the latter option, click on the downward-facing
arrow next to the Play button, and select the Standalone Game option, as seen in the
following screenshot:

Now, while playing, you should be able to press the Esc key you set up to bring up
the pause menu. Clicking on the Resume button should close the pause menu and
return you to the game. If you progress several rounds through the game and then
press the Reset All button from the pause menu, you should automatically reload
the level, with your progress reset to the first round of the game. If this is what
you see, then congratulations! You have accomplished a significant achievement in
creating a save system that is able to store, load, and reset progress across multiple
rounds of gameplay.

Summary
In this chapter, we made significant strides toward making our game a complete
experience that can be played and enjoyed by other people. You learned how to
branch the end states of the game based on whether the player has won or lost.
You also learned to implement a save system that allows the player to return to their
earlier game sessions, with their progress intact. Then, we implemented a round
system that modifies the gameplay goal each time the player progresses to a new
round. Finally, we implemented additional menu systems that give the player
information about which round they are on, and give them the opportunity to pause
the gameplay and even reset their own save file.

www.it-ebooks.info

http://www.it-ebooks.info/

Tracking Game States and Applying Finishing Touches

[150]

This represents the entire game experience we will be creating in the book. In the
next chapter, we will explore making and publishing builds of the game we created
so that we can share the experience with others. In addition, we will look back at
how far your skills have developed, and then look forward and discuss how you
can pursue further learning and extend this game to be even better.

www.it-ebooks.info

http://www.it-ebooks.info/

[151]

Building and Publishing
One of the best ways to grow as a game developer is to share your work with others
so that you can get feedback on how to evolve your designs and content. An early
priority should be to create sharable builds of your game so that other people can
play the experience for themselves. Fortunately, Unreal Engine 4 makes it extremely
simple to create builds of your game that can work across multiple platforms. In this
final chapter, we will look at how to optimize the settings of our game, the process of
building for your target desktop platform, and how you might approach developing
for mobile devices, game consoles, or web browsers. In the process, we will cover the
following topics:

• Optimizing graphics settings
• Creating a packaged game to share with others
• Identifying resources for further learning and development

Optimizing your graphics settings
Prior to creating a build, or a version of our game that has been optimized to play on
a particular platform, you should change the graphics settings of our game to ensure
that they are suited for your target machines. The graphics settings in Unreal Engine
4 are identified as Engine Scalability Settings. This setting interface is composed
of several graphics settings, each of which determines the final visual quality of one
element of the game. With any game, there is a trade-off between high-quality effects
and visuals, and the performance of that game in terms of frame rate.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Publishing

[152]

Games that struggle with a low frame rate performance feel bad from a gameplay
perspective, even if the mechanics are otherwise solid. As such, it is important
to balance the desire to make your game look as good as it can with the need to
understand what the performance impact will be on the machines that your players
will be running the game on. Because of the varying hardware performance of
PCs and Mac computers, many games targeting those platforms use custom menu
settings to allow the player to tweak the graphics settings of the game themselves.
However, the game we have created only uses very simple assets and a relatively
constrained level size, so we are going to simply define some workable defaults
before generating a build to distribute.

To access Engine Scalability Settings, go to the FirstPersonExampleMap tab and
look at the level editor toolbar at the top. Click on the Settings button, and hover
over Engine Scalability Settings to see a pop out display of the Quality settings
you can tweak, as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

The buttons along the top of this menu, ranging from Low to Epic, serve as presets
of the settings based on the broad level of performance versus quality that you want
to target. Clicking on the Low button will set all the quality settings to the minimum,
giving you the best possible performance, in exchange for the least visually attractive
settings. Epic is the opposite end of the spectrum, raising all of the engine quality
settings to their maximum, at the sacrifice of significant performance, depending on
the assets you have chosen to use.

The Auto button will detect the hardware of the machine you are currently running
the editor on, and adjust the graphics settings to a level that strikes a good balance
between performance and quality of graphics for your machine. If you are intending
to target hardware that is roughly equivalent to the machine you are developing
on, using the Auto setting can be a simple way to establish the graphics settings for
your build. If you wish to tweak these settings individually, you can use this brief
description of their functions:

• Resolution Scale: This setting causes the engine to render the game in a
lower resolution than the resolution that your player will be targeting, and
uses software to upscale the game to the targeted resolution. This improves
the performance of the game, at the cost of perceived fuzziness at lower
resolution scales.

• View Distance: This determines how far from the camera location objects are
rendered. Shorter view distances increase performance, but can cause objects
to pop into view.

• Anti-Aliasing: This setting softens the jagged edges of 3D objects in the
world, which can dramatically improve the looks of your game. However,
this filter comes at a significant performance cost.

• Post-Processing: This setting changes the baseline quality settings of several
filters that get applied to the screen after the scene is created, such as motion
blur or light bloom effects.

• Shadows: This changes the baseline quality of several bundled settings that
combine to determine the look of shadows in the game. Highly detailed
shadows often have a dramatic impact on performance.

• Textures: This setting will affect the process by which the textures used in
your game are managed by the engine. If you have many large textures in
your game, reducing this setting can help avoid running out of graphics
memory, and thus increase performance.

• Effects: This setting changes the baseline quality settings of several special
effects applied to the game, such as material reflections or translucency effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Publishing

[154]

Ultimately, the best way of optimizing the performance of your game is to regularly
test it on the machines you intend for people to play it on. If you notice sluggish
performance, take note of where you see it occur. If the performance of your game is
always low, you might need to reduce some of the post-processing or anti-aliasing
effects. If performance is low only in certain areas of your level, you might need to
look at reducing the object density in that area, or reduce the quality of a particular
game model.

Setting up our game to be played by
others
Unreal Engine 4 offers a wide variety of platforms that you can choose from to build
your game, and this list will continue to expand as newer versions of the engine are
released and new technologies emerge. Currently, you can deploy your game on
Windows PC, Mac OS X, iOS, Android, Linux, SteamOS, and HTML 5. This engine
also supports creation of content that utilizes the various emerging virtual reality
platforms, such as Oculus Rift. If you are a registered console developer with the
appropriate development kit, you will be pleased to know that Unreal Engine 4 also
supports creating games for the Xbox One and PlayStation 4. Each platform has its
own unique requirements and best practices associated with it. Mobile games and
web (HTML5) games in particular have higher optimization requirements in order
to get games to perform well on those platforms.

Creating a distributable form of your game for one of these platforms involves a
process called packaging. Packaging takes all of the code and assets of the game and
sets them up in the proper format to perform on the selected platform. We will be
following the path to making a Windows PC or Max OS X release of your game.

It is important to note that Unreal Engine 4 can only create Windows
builds from a copy of the engine running on a Windows PC, and
OS X builds from copies installed on a Mac running OS X. Thus, the
platforms that you can target with your game will be partially limited
by the machine you are developing the game on. If you are developing
on a Windows PC and wish to create an OS X build of the game,
you can install another copy of Unreal Engine 4 on a Mac, and copy
your project files to this new machine. From there, you will be able to
generate an OS X build, with no further changes required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

First, we may want to customize some of the settings that will determine how our
project appears on the target machine. To do so, click on the Settings button in the
level editor toolbar, and then click on Project Settings, as shown here:

Inside Project Settings, you will see a wide variety of options in the left panel for
customization of different aspects of the game, engine, and platform interactions. By
default, the Project – Description page will open. Here, you can customize the project
name, the icon as it will appear in the Unreal Engine project selector, and a brief
description of the project and its creator or publisher, as shown in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Publishing

[156]

Clicking on Maps & Modes will bring you to a page where you can determine which
map the game will load by default. Our game has only one map, so that makes this
choice easy, but often you will need to designate a map dedicated to your main
menu screen to be the first map to load. When you create games with multiple maps,
you will need to ensure that the first map loaded is able to manage which map is
loaded next in the play experience. This is similar to how we determined which
round to activate when we loaded our game from an existing save file:

Finally, clicking on the platform you are targeting with the build will bring you to
that platform's customization page. In the Mac example shown in the following
screenshot, only the Splash screens and the game Icon image are available for
changing. Mobile and console platform targets will have more options to change,
which will be specific to each of those platforms:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

Replace the default Splash and Icon settings with the images you would like to use
for your game. This can be as simple as an edited screenshot from the game, or you
can show off a custom piece of art made specifically for icons and splash screens.
Once you are satisfied with your project settings, leave the Project Settings window.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Publishing

[158]

Packaging the game into a build
To package your game to be played on a particular platform, click on File in the main
menu, then on Package Project, and finally on the relevant platform that matches the
build you want to make, like this:

Once you click on a platform, you will be prompted to select a location on your hard
drive to store the build you make. After selecting a location, you will see a popup
that tells you that the engine is packaging the project. If something goes wrong in
the packaging process, you will be shown the details of the error in the output log
window that pops up. Packaging a project can take a bit of time, depending on how
complex and large the project is, but if you don't encounter any errors, then you will
eventually see a message saying that the packaging is complete. Congratulations,
you have created a completed copy of your game!

Navigate to the folder where you chose to store your build. On a Mac, open the
folder called MacNoEditor and double-click on the application to launch it. For
Windows, open the WindowsNoEditor folder and double-click on the executable to
run the game. Take a moment to go through the game you created in its final form,
and reflect on just how far you have come. You now have a functional game that you
can have other people play and enjoy. Making even simple games is no easy feat,
so you should feel proud of your accomplishment!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[159]

Steps for further learning
As you look ahead past the experiences and skills gained from following this book,
you should formulate strategies to enhance your development skills further. If you
follow the upcoming advice, you will not only enhance your skills as a developer,
but also be able to share your knowledge with the wider Unreal Engine development
community, helping other new learners in the process.

Finish and share as many games as you can
Whether you are looking to start a career with a studio in the commercial gaming
industry or you want to become a successful independent game developer, the most
important advice for honing your skills to succeed is to develop and release as many
games as you can. Game development is both an art and a science. The best way
to gain the insights and confidence you need to evolve into a great developer is by
releasing games and receiving feedback that will push you to grow.

The skills you learned in this book focused on giving you the scripting knowledge
necessary to be able to create a fully functional game. However, there is no reason
to stop here! Take your time to explore the game you have developed, and add more
levels, mechanics, and art. Post your project online to start getting feedback from
friends and members of the Unreal development community. Try experimental
gameplay features and rapidly prototype them for feedback, or polish your games
until they become something you can release to a wider audience and showcase
as the best that you can accomplish. The important thing is to finish and release
your game. After that, start another project! Create a website portfolio that contains
playable forms of the games you have created, and tells a bit about the process you
went through to make them. If you decide to start charging money for your games,
you can add a storefront to your portfolio, from which you can advertise and allow
people to purchase your games.

If you are applying for a job at a studio, the most important thing you can do to give
them confidence in your abilities is show them that you have the skills and discipline
required to take a game from a concept to a shipped project. As an independent
game developer, releasing multiple games early will allow you to gain valuable
feedback from your audience so that you know what is working and what is not.
It will also begin the process of forming a community around your game releases,
generating excitement for each new game that you create.

www.it-ebooks.info

http://www.it-ebooks.info/

Building and Publishing

[160]

Stretch out of your comfort zone
The domain of game development involves numerous skills and disciplines coming
together to develop interactive experiences. Although many of the best game
developers bring with them years of in-depth experience in a particular domain,
such as character modeling or AI programming, all developers benefit from some
level of knowledge that cuts across disciplines. As you continue to develop your
own skills using Unreal Engine 4 as your tool set, it is important to push yourself
continually to expand your knowledge into aspects of game development that you
are not yet comfortable with. Although this book focused on the game mechanics
and functionality you can build using visual scripting, expanding your skill set into
modeling, animation, and design will make you a more versatile developer and
increase the quality of the games that you independently develop.

Resources for additional learning and support
There are many resources available for you to continue broadening your skills. As
you pursue Unreal Engine development, I recommend that you regularly reference
the official documentation (https://docs.unrealengine.com/latest/INT/) to
see the latest instructions on the feature sets of the engine. When you are attempting
to approach a new feature for the first time or need to figure out what a specific
option does to a feature about which you have already been learning, the official
documentation should be the first place you look.

The Unreal Engine answers page (https://answers.unrealengine.com/)
allows you to browse questions and answers provided by other Unreal developers.
For most development challenges that you will face when making games, you will
find another developer who has faced the same issue. If you are struggling on a
particularly difficult problem and the documentation isn't leading you to an answer,
the Unreal Engine answers page should be one of the first places you look at, to see
whether someone else has already overcome this challenge. If nobody has yet asked
the question for which you are seeking help, you should post it yourself so that
the entire community can benefit from your learning process. Sometimes, you will
receive suggestions about a different way of tackling the problem you posted that
makes it less complex and more manageable.

The Unreal Engine community forums (https://forums.unrealengine.com/)
will also be available for you, and should be referenced for helpful advice from other
developers using the tool set. You can ask discipline-specific questions on the forms,
see other people's working projects and code samples, or post status updates on your
work in progress and get feedback on your games from the broader community.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[161]

When you set out to ask a question using any of the preceding resources, first
remember to search and check whether the question has already been answered
before. Most of the time, you will find that it already has. In this way, you can
ensure that when you do ask a question, you are contributing something useful
to the community. Make sure you include in your question detailed information
about what you are trying to accomplish and what you have already tried. This
will maximize the chances of someone else being able to provide the information
that will allow you to succeed.

Summary
In this chapter, we discussed creating playable builds of the game we created across
multiple platforms. We also discussed how you could begin getting feedback about
your game from users, and where you can access additional resources to learn more
about game development with Unreal Engine 4.

From me and everyone involved in the creation of this book, thank you for reading!
I hope you have enjoyed following the examples and learning about visual scripting.
Remember that this is just the beginning of your journey toward creating the games
you want to develop. I wish you best of luck on all of your future endeavors in
game development.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[163]

Index
A
actor 5
AI Controller 87
ammo

counter, reducing 59
tracking 59

anchors 51

B
Behavior Tree

about 86
conditions, adding 97, 98
hearing, adding 107
wandering, adding 126, 127

binding
creating 55

Blackboard 87
Blueprints

character movement, breaking down 30-32
control inputs, customizing 32
creating 10, 11
Event Graph panel, exploring 12, 13
extending, for adding running

functionality 30
hit detection event, creating 13
improving 16-18
material, swapping 14, 15
sprint ability, adding 33-35

build
about 151
game, packaging into 158

C
canvas 50
chasing behavior

creating 99-101
collectable objects

creating 71
collection logic

setting up 72-75
compiling process 15
custom event 65

D
decorator node 98
delta time

used, for obtaining relative speed 22
direction

changing 25
moving targets, testing 26

E
eliminated targets

counter, increasing 60
tracking 59

emitter 44
enemy

Blueprint content, reusing 116-118
chasing behavior, creating 99-101
conditions, adding to Behavior Tree 97, 98
hearing, adding to Behavior Tree 107
investigating tasks, seeding 108-110
making, destructible 115

www.it-ebooks.info

http://www.it-ebooks.info/

[164]

marketplace, importing from 84
multiple enemies, spawning 118
NavMesh, used for making level

traversable 85, 86
noise, adding to player's action 113-115
noise event data, interpreting 111, 112
noise event data, storing 111, 112
play area, expanding 84, 85
setting up, for navigation 83
sight, granting with Pawn Sensing 95-97
sound investigation technique, creating 107
spawning, in Level Blueprint 121-124
stage for intelligence, setting with

AI assets 86, 87
time, saving 116-118
wandering, adding to Behavior

Tree 126, 127
wandering behavior, creating 124
wander point, identifying with

custom task 125, 126
enemy melee attack

creating 103
health meter 106, 107
task, creating 104-106

Environment Query System (EQS) 96
event 12
execution pin 13

F
field of view (FOV) 36
further learning

steps 159-161

G
game

packaging, into build 158
pause menu, creating 144
pause menu, triggering 147-149
pausing 143
setting up 154-157

gameplay functionality 1
gameplay win condition, setting

about 76
menu, displaying 79, 80
target goal, displaying in HUD 76
WinMenu, creating 77, 78

win, triggering 80, 81
Graphical User Interface (GUI) 47
graphics settings

optimizing 151-153
grid 7

H
Heads-up Display (HUD)

about 47
displaying 53

I
input pins 7

L
lose screen

setting up 130-133

M
materials

about 5
Blueprint nodes 6-8
creating 6
exploring 5
material properties 7, 8
substance, adding 9

Matinee 37
mesh 5
movement

actor mobility, changing 18, 19
adding, to object 20
adding, to target 18
collision, changing 18-20
data, storing with variables 21
direction, readying for calculations 22
existing location, translating 23
location, updating 25
relative speed, obtaining with delta time 22

N
navigation behavior

Behavior Tree, using 92-95
communication between assets,

enabling 89-92

www.it-ebooks.info

http://www.it-ebooks.info/

[165]

creating 88
patrol points, setting up 88

NavMesh
used, for making level traversable 85, 86

node 7
noise event data

interpreting 111-113
storing 111-113

normalizing 22

O
objects

adding, to level 5
Oculus Rift 154

P
packaging 154
pause menu

creating 144
triggering 147-149

Pawn Sensing
used, for granting enemy sight 95-97

player
chasing, with AI 95

player actions, constraining
about 64
actions, blocking with branch 69
firing actions, preventing 71
looping timers, used for repeating

actions 67-69
stamina, draining while sprinting 64-66
stamina, regenerating 70, 71

project
creating 1-4
first level, creating 1, 2
settings, adjusting 4
template, setting 3

R
round-based scaling

creating, with saved games 133
enemy target goal, increasing 138, 139
game information, storing with

SaveGame object 133, 134

new round, transitioning to 141-143
saved data, loading 134-138
saved data, storing 134-138
transition screen, creating 139-141

running functionality
adding, by extending Blueprint 30

S
save file

resetting 143-147
resuming 145-147

Selector 93
Sequence 93
sound and particle effects

adding 40
destruction, triggering 43-45
explosions, triggering 43-45
sound effects, triggering 43-45
targets state, checking with branch

node 40-42
spawn limits

managing, with variables 119, 120
spawn point

of enemy appearance, selecting 118
spawn rates

managing, with variables 119, 120
static 19

T
target point 88
task nodes 93
timeline 36
transform 23

U
UI meters

ammo, creating 52, 53
appearance, customizing 50, 51
creating, with UMG 47, 48
enemy counters, creating 52, 53
HUD, displaying 54, 55
shapes, drawing with widget

Blueprints 48-50

www.it-ebooks.info

http://www.it-ebooks.info/

[166]

UI values
bindings for health, creating 55, 56
bindings for stamina, creating 55, 56
connecting, to player variables 55
text bindings, creating 57, 58

Unreal Engine 4
URL 1

Unreal Motion Graphics UI Designer
(UMG)

used, for creating simple UI 48
used, for creating simple UI meters 47

V
vector 21
viewport 5

W
widget Blueprints

used, for drawing shapes 48-50
wire 8

Z
zoom view

animating 36
projectile's speed, increasing 39, 40
timeline, used for transition

smoothing 36-39

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Blueprints Visual Scripting for
Unreal Engine

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

UnrealScript Game
Programming Cookbook
ISBN: 978-1-84969-556-5 Paperback: 272 pages

Discover how you can augment your game
development with the power of UnrealScript

1. Create a truly unique experience within UDK
using a series of powerful recipes to augment
your content.

2. Discover how you can utilize the advanced
functionality offered by the Unreal Engine
with UnrealScript.

3. Learn how to harness the built-in AI in UDK
to its full potential.

Learning Unreal® Engine iOS
Game Development
ISBN: 978-1-78439-771-5 Paperback: 212 pages

Create exciting iOS games with the power
of the new Unreal® Engine 4 subsystems

1. Learn about the entire iOS pipeline, from
game creation to game submission.

2. Develop exciting iOS games with the Unreal
Engine 4.x toolset.

3. Step-by-step tutorials to build optimized
iOS games.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Unreal Development Kit Game
Design Cookbook
ISBN: 978-1-84969-180-2 Paperback: 544 pages

Over 100 recipes to accelerate the process of learning
game design with UDKk

1. An intermediate, fast-paced UDK guide for
game artists.

2. The quickest way to face the challenges of game
design with UDK.

3. All the necessary steps to get your artwork up
and running in game.

4. Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible.

Unreal Development Kit
Beginner's Guide
ISBN: 978-1-84969-052-2 Paperback: 244 pages

A fun, quick, step-by-step guide to level design and
creating your own game world

1. Full of illustrations, diagrams, and tips for
creating your first level and game environment.

2. Clear step-by-step instructions and fun
practical examples.

3. Master the essentials of level design and
environment creation.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Object Interaction
with Blueprints
	Creating a project and the first level
	Setting a template for a new project
	Making sense of the project settings
	Creating the project

	Adding objects to our level
	Exploring materials
	Creating materials
	Material Properties and Blueprint Nodes
	Adding substance to our material

	Creating our first Blueprint
	Exploring the Event Graph panel
	Detecting a hit
	Swapping a material
	Improving the Blueprint

	Adding movement
	Changing actor mobility and collision
	Breaking down our goal
	Storing data with variables
	Readying direction for calculations
	Getting relative speed using delta time
	Translating the existing location
	Updating location

	Changing direction
	Testing moving targets

	Summary

	Chapter 2: Enhancing Player Abilities
	Adding the running functionality by extending a Blueprint
	Breaking down the Blueprint character movement
	Customizing control inputs
	Adding a sprint ability

	Animating a zoom view
	Using a timeline to smooth transitions
	Increasing the projectile's speed

	Adding sound and particle effects
	Giving our targets state with branches
	Triggering sound effects, explosions, and destruction

	Summary

	Chapter 3: Creating Screen UI Elements
	Creating simple UI meters with UMG
	Drawing shapes with widget Blueprints
	Customizing the meter's appearance
	Creating ammo and enemy counters
	Displaying the HUD

	Connecting UI values to player variables
	Creating bindings for health and stamina
	Making text bindings

	Tracking the ammo and eliminated targets
	Reducing the ammo counter
	Increasing the targets eliminated counter

	Summary

	Chapter 4: Creating Constraints and Gameplay Objectives
	Constraining player actions
	Draining stamina while sprinting
	Using looping timers to repeat actions
	Blocking actions with branches
	Regenerating stamina
	Preventing firing actions when out of ammo

	Creating collectable objects
	Setting up collection logic

	Setting a gameplay win condition
	Displaying a target goal in the HUD
	Creating a win menu screen
	Displaying the menu
	Triggering a win

	Summary

	Chapter 5: Making Moving Enemies
with AI
	Setting up the enemy actor to navigate
	Importing from the marketplace
	Expanding the play area
	Making the level traversable with a NavMesh
	Setting the stage for intelligence with
AI assets

	Creating navigation behavior
	Setting up patrol points
	Enabling communication between assets
	Teaching our AI to walk with the Behavior Tree

	Making the AI chase the player
	Giving the enemy sight with Pawn Sensing
	Adding conditions to the Behavior Tree
	Creating chasing behavior

	Summary

	Chapter 6: Upgrading the AI Enemies
	Creating an enemy attack
	Making an attack task
	Updating the health meter

	Making enemies hear and investigate sounds
	Adding hearing to the Behavior Tree
	Setting up the investigating tasks
	Interpreting and storing the noise event data
	Adding noise to the player's actions

	Making the enemies destructible
	Saving time by reusing existing Blueprint content

	Spawning more enemies during gameplay
	Choosing a spawn point where enemies
will appear
	Managing spawn rates and limits with variables
	Spawning new enemies in the Level Blueprint

	Creating enemy wandering behavior
	Identifying a wander point with a custom task
	Adding wandering to the Behavior Tree

	Summary

	Chapter 7: Tracking Game States and Applying Finishing Touches
	Making danger real with player death
	Setting up a lose screen
	Creating round-based scaling with
saved games
	Storing game information using a SaveGame object
	Storing and loading the saved data when starting the game
	Increasing the enemy target goal
	Create a transition screen to be shown between rounds
	Transitioning to a new round when the current round is won

	Pausing the game and resetting the save file
	Creating a pause menu
	Resuming and resetting the save file
	Triggering the pause menu

	Summary

	Chapter 8: Building and Publishing
	Optimizing your graphics settings
	Setting up our game to be played by others
	Packaging the game into a build

	Steps for further learning
	Finish and share as many games as you can
	Stretch out of your comfort zone
	Resources for additional learning and support

	Summary

	Index

