kinect/codes/Azure-Kinect-Sensor-SDK/tests/latency/latency_perf.cpp

1074 lines
40 KiB
C++
Raw Permalink Normal View History

2024-03-06 18:05:53 +00:00
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//************************ Includes *****************************
#ifdef _WIN32
#include <windows.h>
#endif
#include <k4a/k4a.h>
#include <k4ainternal/common.h>
#include <k4ainternal/logging.h>
#include <gtest/gtest.h>
#include <utcommon.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <k4a/k4a.h>
#include <azure_c_shared_utility/threadapi.h>
#include <azure_c_shared_utility/envvariable.h>
#include <deque>
#include <mutex>
#ifndef _WIN32
#include <time.h>
#endif
#define LLD(val) ((int64_t)(val))
#define STS_TO_MS(ts) (LLD((ts) / 1000000)) // System TS convertion to milliseconds
static bool g_skip_delay_off_color_validation = false;
static int32_t g_depth_delay_off_color_usec = 0;
static uint8_t g_device_index = K4A_DEVICE_DEFAULT;
static k4a_wired_sync_mode_t g_wired_sync_mode = K4A_WIRED_SYNC_MODE_STANDALONE;
static int g_capture_count = 50;
static bool g_synchronized_images_only = false;
static bool g_no_startup_flush = false;
static uint32_t g_subordinate_delay_off_master_usec = 0;
static bool g_manual_exposure = true;
static uint32_t g_exposure_setting = 31000; // will round up to nearest value
static bool g_power_line_50_hz = false;
using ::testing::ValuesIn;
typedef struct _sys_pts_time_t
{
uint64_t pts;
uint64_t system;
} sys_pts_time_t;
static std::mutex g_lock_mutex;
static std::deque<sys_pts_time_t> g_time_c; // Color image copy of data
static std::deque<sys_pts_time_t> g_time_i; // Ir image copy of data
struct latency_parameters
{
int test_number;
const char *test_name;
k4a_fps_t fps;
k4a_image_format_t color_format;
k4a_color_resolution_t color_resolution;
k4a_depth_mode_t depth_mode;
friend std::ostream &operator<<(std::ostream &os, const latency_parameters &obj)
{
return os << "test index: (" << obj.test_name << ") " << (int)obj.test_number;
}
};
struct thread_data
{
volatile bool save_samples;
volatile bool exit;
volatile uint32_t imu_samples;
k4a_device_t device;
};
class latency_perf : public ::testing::Test, public ::testing::WithParamInterface<latency_parameters>
{
public:
virtual void SetUp()
{
ASSERT_EQ(K4A_RESULT_SUCCEEDED, k4a_device_open(g_device_index, &m_device)) << "Couldn't open device\n";
ASSERT_NE(m_device, nullptr);
EXPECT_NE((FILE *)NULL, (m_file_handle = fopen("latency_testResults.csv", "a")));
}
virtual void TearDown()
{
if (m_device != nullptr)
{
k4a_device_close(m_device);
m_device = nullptr;
}
if (m_file_handle)
{
fclose(m_file_handle);
}
}
void print_and_log(const char *message, const char *mode, int64_t ave, int64_t min, int64_t max);
void process_image(k4a_capture_t capture,
uint64_t current_system_ts,
bool process_color,
bool *image_first_pass,
std::deque<uint64_t> *system_latency,
std::deque<uint64_t> *system_latency_from_pts,
uint64_t *system_ts_last,
uint64_t *system_ts_from_pts_last);
k4a_device_t m_device = nullptr;
FILE *m_file_handle;
};
static const char *get_string_from_color_format(k4a_image_format_t format)
{
switch (format)
{
case K4A_IMAGE_FORMAT_COLOR_NV12:
return "K4A_IMAGE_FORMAT_COLOR_NV12";
break;
case K4A_IMAGE_FORMAT_COLOR_YUY2:
return "K4A_IMAGE_FORMAT_COLOR_YUY2";
break;
case K4A_IMAGE_FORMAT_COLOR_MJPG:
return "K4A_IMAGE_FORMAT_COLOR_MJPG";
break;
case K4A_IMAGE_FORMAT_COLOR_BGRA32:
return "K4A_IMAGE_FORMAT_COLOR_BGRA32";
break;
case K4A_IMAGE_FORMAT_DEPTH16:
return "K4A_IMAGE_FORMAT_DEPTH16";
break;
case K4A_IMAGE_FORMAT_IR16:
return "K4A_IMAGE_FORMAT_IR16";
break;
case K4A_IMAGE_FORMAT_CUSTOM8:
return "K4A_IMAGE_FORMAT_CUSTOM8";
break;
case K4A_IMAGE_FORMAT_CUSTOM16:
return "K4A_IMAGE_FORMAT_CUSTOM16";
break;
case K4A_IMAGE_FORMAT_CUSTOM:
return "K4A_IMAGE_FORMAT_CUSTOM";
break;
}
assert(0);
return "K4A_IMAGE_FORMAT_UNKNOWN";
}
static const char *get_string_from_color_resolution(k4a_color_resolution_t resolution)
{
switch (resolution)
{
case K4A_COLOR_RESOLUTION_OFF:
return "OFF";
break;
case K4A_COLOR_RESOLUTION_720P:
return "1280 * 720 16:9";
break;
case K4A_COLOR_RESOLUTION_1080P:
return "1920 * 1080 16:9";
break;
case K4A_COLOR_RESOLUTION_1440P:
return "2560 * 1440 16:9";
break;
case K4A_COLOR_RESOLUTION_1536P:
return "2048 * 1536 4:3";
break;
case K4A_COLOR_RESOLUTION_2160P:
return "3840 * 2160 16:9";
break;
case K4A_COLOR_RESOLUTION_3072P:
return "4096 * 3072 4:3";
break;
}
assert(0);
return "Unknown resolution";
}
static const char *get_string_from_depth_mode(k4a_depth_mode_t mode)
{
switch (mode)
{
case K4A_DEPTH_MODE_OFF:
return "K4A_DEPTH_MODE_OFF";
break;
case K4A_DEPTH_MODE_NFOV_2X2BINNED:
return "K4A_DEPTH_MODE_NFOV_2X2BINNED";
break;
case K4A_DEPTH_MODE_NFOV_UNBINNED:
return "K4A_DEPTH_MODE_NFOV_UNBINNED";
break;
case K4A_DEPTH_MODE_WFOV_2X2BINNED:
return "K4A_DEPTH_MODE_WFOV_2X2BINNED";
break;
case K4A_DEPTH_MODE_WFOV_UNBINNED:
return "K4A_DEPTH_MODE_WFOV_UNBINNED";
break;
case K4A_DEPTH_MODE_PASSIVE_IR:
return "K4A_DEPTH_MODE_PASSIVE_IR";
break;
}
assert(0);
return "Unknown Depth";
}
static bool get_system_time(uint64_t *time_nsec)
{
k4a_result_t result = K4A_RESULT_SUCCEEDED;
#ifdef _WIN32
LARGE_INTEGER qpc = { 0 };
static LARGE_INTEGER freq = { 0 };
result = K4A_RESULT_FROM_BOOL(QueryPerformanceCounter(&qpc) != 0);
if (K4A_FAILED(result))
{
return false;
}
if (freq.QuadPart == 0)
{
result = K4A_RESULT_FROM_BOOL(QueryPerformanceFrequency(&freq) != 0);
if (K4A_FAILED(result))
{
return false;
}
}
// Calculate seconds in such a way we minimize overflow.
// Rollover happens, for a 1MHz Freq, when qpc.QuadPart > 0x003F FFFF FFFF FFFF; ~571 Years after boot.
*time_nsec = qpc.QuadPart / freq.QuadPart * 1000000000;
*time_nsec += qpc.QuadPart % freq.QuadPart * 1000000000 / freq.QuadPart;
#else
struct timespec ts_time;
result = K4A_RESULT_FROM_BOOL(clock_gettime(CLOCK_MONOTONIC, &ts_time) == 0);
if (K4A_FAILED(result))
{
return false;
}
// Rollover happens about ~136 years after boot.
*time_nsec = (uint64_t)ts_time.tv_sec * 1000000000 + (uint64_t)ts_time.tv_nsec;
#endif
return true;
}
static int _latency_imu_thread(void *param)
{
struct thread_data *data = (struct thread_data *)param;
k4a_result_t result;
k4a_imu_sample_t imu;
result = k4a_device_start_imu(data->device);
if (K4A_FAILED(result))
{
printf("Failed to start imu\n");
return result;
}
g_time_c.clear();
g_time_i.clear();
while (data->exit == false)
{
k4a_wait_result_t wresult = k4a_device_get_imu_sample(data->device, &imu, 10);
if (wresult == K4A_WAIT_RESULT_FAILED)
{
printf("k4a_device_get_imu_sample failed\n");
result = K4A_RESULT_FAILED;
break;
}
else if ((wresult == K4A_WAIT_RESULT_SUCCEEDED) && (data->save_samples))
{
sys_pts_time_t time;
time.pts = imu.acc_timestamp_usec;
if (get_system_time(&time.system) == 0)
{
result = K4A_RESULT_FAILED;
break;
}
// Save data to each of the queues
g_lock_mutex.lock();
g_time_c.push_back(time);
g_time_i.push_back(time);
g_lock_mutex.unlock();
}
};
k4a_device_stop_imu(data->device);
return result;
}
// Drop the lock and sleep for Xms. This is to allow the queue to fill again. Return if we yield too long.
#define YIELD_THREAD(lock_var, count, message) \
lock_var.unlock(); \
printf("Lock dropped while %s\n", message); \
ThreadAPI_Sleep(2); \
if (++count > 15) \
{ \
EXPECT_LT(count, 15); \
return 0; \
} \
lock_var.lock();
static uint64_t lookup_system_ts(uint64_t pts_ts, bool color)
{
sys_pts_time_t last_time;
uint64_t start_time_nsec;
uint64_t current_time_nsec;
int count = 0;
bool found = false;
std::deque<sys_pts_time_t> *time_queue = &g_time_i;
if (color)
{
time_queue = &g_time_c;
}
g_lock_mutex.lock();
// Record start time
if (get_system_time(&start_time_nsec) == 0)
{
printf("ERROR getting system time\n");
EXPECT_TRUE(0);
g_lock_mutex.unlock();
return 0;
}
int delay_count = 0;
while (time_queue->empty())
{
// Drop lock, wait, retake lock - Exit if taking too long
YIELD_THREAD(g_lock_mutex, delay_count, "Initializing")
}
last_time = time_queue->front();
time_queue->pop_front();
while (!found)
{
int x;
for (x = 0; !time_queue->empty(); x++)
{
last_time = time_queue->front();
if (pts_ts > last_time.pts)
{
// Hold onto last_time for 1 more loop
last_time = time_queue->front();
time_queue->pop_front();
}
else
{
// We just found the first system time that is beyond the one we are looking for.
if ((pts_ts - last_time.pts) < (time_queue->front().pts - pts_ts))
{
g_lock_mutex.unlock();
found = true;
return last_time.system;
}
uint64_t ret_time = time_queue->front().system;
g_lock_mutex.unlock();
found = true;
return ret_time;
}
if (get_system_time(&current_time_nsec) == 0)
{
printf("ERROR getting system time\n");
EXPECT_TRUE(0);
g_lock_mutex.unlock();
return 0;
}
if (STS_TO_MS(current_time_nsec - start_time_nsec) > 1000)
{
printf("Count for break is %d\n", count);
break; // Don't hold lock too long, run YIELD_THREAD below
}
}
// Queue is drained or we held the lock too long. We need to let the IMU thread catch up. Drop lock, wait,
// retake lock - Exit if taking too long
YIELD_THREAD(g_lock_mutex, delay_count, "walking list.");
// Update start time after the thread yield
if (get_system_time(&start_time_nsec) == 0)
{
printf("ERROR getting system time\n");
EXPECT_TRUE(0);
g_lock_mutex.unlock();
return 0;
}
}
// Should not happen
EXPECT_FALSE(1);
g_lock_mutex.unlock();
return 0;
}
void latency_perf::print_and_log(const char *message, const char *mode, int64_t ave, int64_t min, int64_t max)
{
printf(" %30s %30s: Ave=%" PRId64 " min=%" PRId64 " max=%" PRId64 "\n", message, mode, ave, min, max);
if (m_file_handle)
{
char buffer[1024];
snprintf(buffer,
sizeof(buffer),
"%s, %s (min ave max),%" PRId64 ",%" PRId64 ",%" PRId64 ",",
mode,
message,
min,
ave,
max);
fputs(buffer, m_file_handle);
}
}
void latency_perf::process_image(k4a_capture_t capture,
uint64_t current_system_ts,
bool process_color,
bool *image_first_pass,
std::deque<uint64_t> *system_latency,
std::deque<uint64_t> *system_latency_from_pts,
uint64_t *system_ts_last,
uint64_t *system_ts_from_pts_last)
{
k4a_image_t image;
if (process_color)
{
image = k4a_capture_get_color_image(capture);
}
else
{
image = k4a_capture_get_ir_image(capture);
}
if (image)
{
uint64_t system_ts = k4a_image_get_system_timestamp_nsec(image);
uint64_t system_ts_from_pts = lookup_system_ts(k4a_image_get_device_timestamp_usec(image), process_color);
// Time from center of exposure until given to us from the SDK; based on Host system time.
uint64_t system_ts_latency = current_system_ts - system_ts;
// Time from center of exposure PTS time (converted to system time based on low latency IMU data) until we
// read the frame; based on Host system time.
uint64_t system_ts_latency_from_pts = current_system_ts - system_ts_from_pts;
if (system_ts_from_pts > current_system_ts)
{
printf("Calculated %s pts system time %" PRId64 " is after our arrival system time %" PRId64
" a diff of %" PRId64 "\n",
process_color ? "color" : "IR",
STS_TO_MS(system_ts_from_pts),
STS_TO_MS(current_system_ts),
STS_TO_MS(system_ts_from_pts - current_system_ts));
// Update values anyway
*system_ts_last = system_ts;
*system_ts_from_pts_last = system_ts_from_pts;
}
else
{
if (!*image_first_pass)
{
system_latency->push_back(current_system_ts - system_ts);
system_latency_from_pts->push_back(system_ts_latency_from_pts);
printf("| %9" PRId64 " [%5" PRId64 "] [%5" PRId64 "] ",
STS_TO_MS(system_ts),
STS_TO_MS(system_ts_latency),
STS_TO_MS(system_ts_latency_from_pts));
// TS should increase
EXPECT_GT(system_ts, *system_ts_last);
EXPECT_GT(system_ts_from_pts, *system_ts_from_pts_last);
}
*system_ts_last = system_ts;
*system_ts_from_pts_last = system_ts_from_pts;
*image_first_pass = false;
}
k4a_image_release(image);
}
else
{
printf("| ");
}
}
TEST_P(latency_perf, testTest)
{
auto as = GetParam();
const int32_t TIMEOUT_IN_MS = 1000;
k4a_capture_t capture = NULL;
int capture_count = g_capture_count;
bool failed = false;
k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
thread_data thread = { 0 };
THREAD_HANDLE th1 = NULL;
std::deque<uint64_t> color_system_latency;
std::deque<uint64_t> color_system_latency_from_pts;
std::deque<uint64_t> ir_system_latency;
std::deque<uint64_t> ir_system_latency_from_pts;
uint64_t current_system_ts = 0;
uint64_t color_system_ts_last = 0, color_system_ts_from_pts_last = 0;
uint64_t ir_system_ts_last = 0, ir_system_ts_from_pts_last = 0;
int32_t read_exposure = 0;
printf("Capturing %d frames for test: %s\n", g_capture_count, as.test_name);
{
int32_t power_line_setting = g_power_line_50_hz ? 1 : 2;
ASSERT_EQ(K4A_RESULT_SUCCEEDED,
k4a_device_set_color_control(m_device,
K4A_COLOR_CONTROL_POWERLINE_FREQUENCY,
K4A_COLOR_CONTROL_MODE_MANUAL,
power_line_setting));
printf("Power line mode set to manual and %s.\n", power_line_setting == 1 ? "50Hz" : "60Hz");
}
if (g_manual_exposure)
{
k4a_color_control_mode_t read_mode;
ASSERT_EQ(K4A_RESULT_SUCCEEDED,
k4a_device_set_color_control(m_device,
K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE,
K4A_COLOR_CONTROL_MODE_MANUAL,
(int32_t)g_exposure_setting));
ASSERT_EQ(K4A_RESULT_SUCCEEDED,
k4a_device_get_color_control(m_device,
K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE,
&read_mode,
&read_exposure));
printf(
"Setting exposure to manual mode, exposure target is: %d. Actual mode is: %s. Actual value is: %d.\n",
g_exposure_setting,
read_mode == K4A_COLOR_CONTROL_MODE_AUTO ? "auto" : "manual",
read_exposure);
read_exposure = 0; // Clear this so we read it again after sensor is started.
}
else
{
ASSERT_EQ(K4A_RESULT_SUCCEEDED,
k4a_device_set_color_control(m_device,
K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE,
K4A_COLOR_CONTROL_MODE_AUTO,
0));
printf("Auto Exposure\n");
read_exposure = 0;
}
config.color_format = as.color_format;
config.color_resolution = as.color_resolution;
config.depth_mode = as.depth_mode;
config.camera_fps = as.fps;
config.depth_delay_off_color_usec = g_depth_delay_off_color_usec;
config.wired_sync_mode = g_wired_sync_mode;
config.synchronized_images_only = g_synchronized_images_only;
config.subordinate_delay_off_master_usec = g_subordinate_delay_off_master_usec;
printf("Config being used is:\n");
printf(" color_format:%d\n", config.color_format);
printf(" color_resolution:%d\n", config.color_resolution);
printf(" depth_mode:%d\n", config.depth_mode);
printf(" camera_fps:%d\n", config.camera_fps);
printf(" synchronized_images_only:%d\n", config.synchronized_images_only);
printf(" depth_delay_off_color_usec:%d\n", config.depth_delay_off_color_usec);
printf(" wired_sync_mode:%d\n", config.wired_sync_mode);
printf(" subordinate_delay_off_master_usec:%d\n", config.subordinate_delay_off_master_usec);
printf(" disable_streaming_indicator:%d\n", config.disable_streaming_indicator);
printf("\n");
ASSERT_EQ(K4A_RESULT_SUCCEEDED, k4a_device_start_cameras(m_device, &config));
thread.device = m_device;
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Create(&th1, _latency_imu_thread, &thread));
if (!g_no_startup_flush)
{
//
// Wait for streams to start and then purge the data collected
//
if (as.fps == K4A_FRAMES_PER_SECOND_30)
{
printf("Flushing first 2s of data\n");
ThreadAPI_Sleep(2000);
}
else if (as.fps == K4A_FRAMES_PER_SECOND_15)
{
printf("Flushing first 3s of data\n");
ThreadAPI_Sleep(3000);
}
else
{
printf("Flushing first 4s of data\n");
ThreadAPI_Sleep(4000);
}
while (K4A_WAIT_RESULT_SUCCEEDED == k4a_device_get_capture(m_device, &capture, 0))
{
// Drain the queue
k4a_capture_release(capture);
};
}
else
{
printf("Flushing no start of stream data\n");
}
// For consistent IMU timing, block entering the while loop until we get 1 sample
if (K4A_WAIT_RESULT_SUCCEEDED == k4a_device_get_capture(m_device, &capture, 1000))
{
k4a_capture_release(capture);
capture = NULL;
}
printf("Sys lat: is this difference in the system time recorded on the image and the system time when the image "
"was presented to the caller.\n");
printf(
"PTS lat: Similar to Sys lat, but instead of using the system time assigned to the image (which is recorded by "
"the Host PC), the image PTS (which is center of exposure in single camera mode) is used to "
"calculate a more accurate system time from when the same PTS arrived from the least latent sensor source, "
"IMU. The IMU data received is turned into a list of PTS values and associated system ts's for when each "
"sample arrived on system.\n");
printf("+---------------------------+---------------------------+\n");
printf("| Color Info (ms) | IR 16 Info (ms) |\n");
printf("| system [ sys ] [ PTS ] | system [ sys ] [ PTS ] |\n");
printf("| ts [ lat ] [ lat ] | ts [ lat ] [ lat ] |\n");
printf("+---------------------------+---------------------------+\n");
thread.save_samples = true; // start saving IMU samples
bool color_first_pass = true;
bool ir_first_pass = true;
capture_count++; // to account for dropping the first sample
while (capture_count-- > 0)
{
if (capture)
{
k4a_capture_release(capture);
}
// Get a depth frame
k4a_wait_result_t wresult = k4a_device_get_capture(m_device, &capture, TIMEOUT_IN_MS);
if (wresult != K4A_WAIT_RESULT_SUCCEEDED)
{
if (wresult == K4A_WAIT_RESULT_TIMEOUT)
{
printf("Timed out waiting for a capture\n");
}
else // wresult == K4A_WAIT_RESULT_FAILED:
{
printf("Failed to read a capture\n");
capture_count = 0;
}
failed = true;
continue;
}
if (get_system_time(&current_system_ts) == 0)
{
printf("Timed out waiting for a capture\n");
failed = true;
continue;
}
if (read_exposure == 0)
{
k4a_image_t image = k4a_capture_get_color_image(capture);
if (image)
{
read_exposure = (int32_t)k4a_image_get_exposure_usec(image);
k4a_image_release(image);
}
}
process_image(capture,
current_system_ts,
true, // Color Image
&color_first_pass,
&color_system_latency,
&color_system_latency_from_pts,
&color_system_ts_last,
&color_system_ts_from_pts_last);
process_image(capture,
current_system_ts,
false, // IR Image
&ir_first_pass,
&ir_system_latency,
&ir_system_latency_from_pts,
&ir_system_ts_last,
&ir_system_ts_from_pts_last);
printf("|\n"); // End of line
} // End capture loop
thread.exit = true; // shut down IMU thread
k4a_device_stop_cameras(m_device);
if (capture)
{
k4a_capture_release(capture);
}
int thread_result;
ASSERT_EQ(THREADAPI_OK, ThreadAPI_Join(th1, &thread_result));
ASSERT_EQ(thread_result, (int)K4A_RESULT_SUCCEEDED);
printf("\nLatency Results:\n");
{
// init CSV line
if (m_file_handle != 0)
{
std::time_t date_time = std::time(NULL);
char buffer_date_time[100];
std::strftime(buffer_date_time, sizeof(buffer_date_time), "%c", localtime(&date_time));
const char *computer_name = environment_get_variable("COMPUTERNAME");
const char *disable_synchronization = environment_get_variable("K4A_DISABLE_SYNCHRONIZATION");
char buffer[1024];
snprintf(buffer,
sizeof(buffer),
"%s, %s, %s, %s,%s, %s, fps, %d, %s, captures, %d, %d, %d,",
buffer_date_time,
computer_name ? computer_name : "computer name not set",
as.test_name,
disable_synchronization ? disable_synchronization : "0",
get_string_from_color_format(as.color_format),
get_string_from_color_resolution(as.color_resolution),
k4a_convert_fps_to_uint(as.fps),
get_string_from_depth_mode(as.depth_mode),
g_capture_count,
g_manual_exposure,
read_exposure);
fputs(buffer, m_file_handle);
}
}
{
uint64_t color_system_latency_ave = 0;
uint64_t min = (uint64_t)-1;
uint64_t max = 0;
for (size_t x = 0; x < color_system_latency.size(); x++)
{
color_system_latency_ave += color_system_latency[x];
if (color_system_latency[x] < min)
{
min = color_system_latency[x];
}
if (color_system_latency[x] > max)
{
max = color_system_latency[x];
}
}
color_system_latency_ave = color_system_latency_ave / color_system_latency.size();
print_and_log("Color System Time Latency",
get_string_from_color_format(config.color_format),
STS_TO_MS(color_system_latency_ave),
STS_TO_MS(min),
STS_TO_MS(max));
}
{
uint64_t color_system_latency_from_pts_ave = 0;
uint64_t min = (uint64_t)-1;
uint64_t max = 0;
for (size_t x = 0; x < color_system_latency_from_pts.size(); x++)
{
color_system_latency_from_pts_ave += color_system_latency_from_pts[x];
if (color_system_latency_from_pts[x] < min)
{
min = color_system_latency_from_pts[x];
}
if (color_system_latency_from_pts[x] > max)
{
max = color_system_latency_from_pts[x];
}
}
color_system_latency_from_pts_ave = color_system_latency_from_pts_ave / color_system_latency_from_pts.size();
print_and_log("Color System Time PTS Latency",
get_string_from_color_format(config.color_format),
STS_TO_MS(color_system_latency_from_pts_ave),
STS_TO_MS(min),
STS_TO_MS(max));
}
{
uint64_t ir_system_latency_ave = 0;
uint64_t min = (uint64_t)-1;
uint64_t max = 0;
for (size_t x = 0; x < ir_system_latency.size(); x++)
{
ir_system_latency_ave += ir_system_latency[x];
if (ir_system_latency[x] < min)
{
min = ir_system_latency[x];
}
if (ir_system_latency[x] > max)
{
max = ir_system_latency[x];
}
}
ir_system_latency_ave = ir_system_latency_ave / ir_system_latency.size();
print_and_log(" IR System Time Latency",
get_string_from_depth_mode(config.depth_mode),
STS_TO_MS(ir_system_latency_ave),
STS_TO_MS(min),
STS_TO_MS(max));
}
{
uint64_t ir_system_latency_from_pts_ave = 0;
uint64_t min = (uint64_t)-1;
uint64_t max = 0;
for (size_t x = 0; x < ir_system_latency_from_pts.size(); x++)
{
ir_system_latency_from_pts_ave += ir_system_latency_from_pts[x];
if (ir_system_latency_from_pts[x] < min)
{
min = ir_system_latency_from_pts[x];
}
if (ir_system_latency_from_pts[x] > max)
{
max = ir_system_latency_from_pts[x];
}
}
ir_system_latency_from_pts_ave = ir_system_latency_from_pts_ave / ir_system_latency_from_pts.size();
print_and_log(" IR System Time PTS",
get_string_from_depth_mode(config.depth_mode),
STS_TO_MS(ir_system_latency_from_pts_ave),
STS_TO_MS(min),
STS_TO_MS(max));
}
printf("\n");
if (m_file_handle != 0)
{
// Terminate line
fputs("\n", m_file_handle);
}
ASSERT_EQ(K4A_RESULT_SUCCEEDED,
k4a_device_set_color_control(m_device,
K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE,
K4A_COLOR_CONTROL_MODE_AUTO,
0));
ASSERT_EQ(failed, false);
return;
}
// K4A_DEPTH_MODE_WFOV_UNBINNED is the most demanding depth mode, only runs at 15FPS or less
// clang-format off
// PASSIVE_IR is fastest Depth Mode - YUY2 is fastest Color mode
static struct latency_parameters tests_30fps[] = {
// All Color modes with fast Depth
{ 0, "FPS_30_MJPEG_2160P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_MJPG, K4A_COLOR_RESOLUTION_2160P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 1, "FPS_30_MJPEG_1536P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_MJPG, K4A_COLOR_RESOLUTION_1536P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 2, "FPS_30_MJPEG_1440P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_MJPG, K4A_COLOR_RESOLUTION_1440P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 3, "FPS_30_MJPEG_1080P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_MJPG, K4A_COLOR_RESOLUTION_1080P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 4, "FPS_30_MJPEG_0720P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_MJPG, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 5, "FPS_30_NV12__0720P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_NV12, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 6, "FPS_30_YUY2__0720P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_YUY2, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 7, "FPS_30_BGRA32_2160P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_BGRA32, K4A_COLOR_RESOLUTION_2160P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 8, "FPS_30_BGRA32_1536P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_BGRA32, K4A_COLOR_RESOLUTION_1536P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 9, "FPS_30_BGRA32_1440P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_BGRA32, K4A_COLOR_RESOLUTION_1440P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 10, "FPS_30_BGRA32_1080P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_BGRA32, K4A_COLOR_RESOLUTION_1080P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 11, "FPS_30_BGRA32_0720P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_BGRA32, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_PASSIVE_IR},
// All Depth Modes with fastest Color
{ 12, "FPS_30_YUY2__0720P_NFOV_2X2BINNED", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_YUY2, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_NFOV_2X2BINNED},
{ 13, "FPS_30_YUY2__0720P_NFOV_UNBINNED", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_YUY2, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_NFOV_UNBINNED},
{ 14, "FPS_30_YUY2__0720P_WFOV_2X2BINNED", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_YUY2, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_WFOV_2X2BINNED},
{ 15, "FPS_30_YUY2__0720P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_30, K4A_IMAGE_FORMAT_COLOR_YUY2, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_PASSIVE_IR},
};
INSTANTIATE_TEST_CASE_P(30FPS_TESTS, latency_perf, ValuesIn(tests_30fps));
static struct latency_parameters tests_15fps[] = {
// All Color modes with fast Depth
{ 0, "FPS_15_MJPEG_3072P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_15, K4A_IMAGE_FORMAT_COLOR_MJPG, K4A_COLOR_RESOLUTION_3072P, K4A_DEPTH_MODE_PASSIVE_IR},
{ 1, "FPS_15_BGRA32_3072P_PASSIVE_IR", K4A_FRAMES_PER_SECOND_15, K4A_IMAGE_FORMAT_COLOR_BGRA32, K4A_COLOR_RESOLUTION_3072P, K4A_DEPTH_MODE_PASSIVE_IR},
// All Depth Modes with fastest Color
{ 2, "FPS_15_YUY2__0720P_WFOV_UNBINNED", K4A_FRAMES_PER_SECOND_15, K4A_IMAGE_FORMAT_COLOR_YUY2, K4A_COLOR_RESOLUTION_720P, K4A_DEPTH_MODE_WFOV_UNBINNED},
};
INSTANTIATE_TEST_CASE_P(15FPS_TESTS, latency_perf, ValuesIn(tests_15fps));
// clang-format on
int main(int argc, char **argv)
{
bool error = false;
k4a_unittest_init();
::testing::InitGoogleTest(&argc, argv);
for (int i = 1; i < argc; ++i)
{
char *argument = argv[i];
for (int j = 0; argument[j]; j++)
{
argument[j] = (char)tolower(argument[j]);
}
if (strcmp(argument, "--depth_delay_off_color") == 0)
{
if (i + 1 <= argc)
{
g_depth_delay_off_color_usec = (int32_t)strtol(argv[i + 1], NULL, 10);
printf("Setting g_depth_delay_off_color_usec = %d\n", g_depth_delay_off_color_usec);
i++;
}
else
{
printf("Error: depth_delay_off_color parameter missing\n");
error = true;
}
}
else if (strcmp(argument, "--skip_delay_off_color_validation") == 0)
{
g_skip_delay_off_color_validation = true;
}
else if (strcmp(argument, "--master") == 0)
{
g_wired_sync_mode = K4A_WIRED_SYNC_MODE_MASTER;
printf("Setting g_wired_sync_mode = K4A_WIRED_SYNC_MODE_MASTER\n");
}
else if (strcmp(argument, "--subordinate") == 0)
{
g_wired_sync_mode = K4A_WIRED_SYNC_MODE_SUBORDINATE;
printf("Setting g_wired_sync_mode = K4A_WIRED_SYNC_MODE_SUBORDINATE\n");
}
else if (strcmp(argument, "--synchronized_images_only") == 0)
{
g_synchronized_images_only = true;
printf("g_synchronized_images_only = true\n");
}
else if (strcmp(argument, "--no_startup_flush") == 0)
{
g_no_startup_flush = true;
printf("g_no_startup_flush = true\n");
}
else if (strcmp(argument, "--60hz") == 0)
{
g_power_line_50_hz = false;
printf("g_power_line_50_hz = false\n");
}
else if (strcmp(argument, "--50hz") == 0)
{
g_power_line_50_hz = true;
printf("g_power_line_50_hz = true\n");
}
else if (strcmp(argument, "--index") == 0)
{
if (i + 1 <= argc)
{
g_device_index = (uint8_t)strtol(argv[i + 1], NULL, 10);
printf("setting g_device_index = %d\n", g_device_index);
i++;
}
else
{
printf("Error: index parameter missing\n");
error = true;
}
}
else if (strcmp(argument, "--subordinate_delay_off_master_usec") == 0)
{
if (i + 1 <= argc)
{
g_subordinate_delay_off_master_usec = (uint32_t)strtol(argv[i + 1], NULL, 10);
printf("g_subordinate_delay_off_master_usec = %d\n", g_subordinate_delay_off_master_usec);
i++;
}
else
{
printf("Error: index parameter missing\n");
error = true;
}
}
else if (strcmp(argument, "--capture_count") == 0)
{
if (i + 1 <= argc)
{
g_capture_count = (int)strtol(argv[i + 1], NULL, 10);
printf("g_capture_count g_device_index = %d\n", g_capture_count);
i++;
}
else
{
printf("Error: index parameter missing\n");
error = true;
}
}
else if (strcmp(argument, "--exposure") == 0)
{
if (i + 1 <= argc)
{
g_exposure_setting = (uint32_t)strtol(argv[i + 1], NULL, 10);
printf("g_exposure_setting = %d\n", g_exposure_setting);
g_manual_exposure = true;
i++;
}
else
{
printf("Error: index parameter missing\n");
error = true;
}
}
else if (strcmp(argument, "--auto") == 0)
{
g_manual_exposure = false;
printf("Auto Exposure Enabled\n");
}
if ((strcmp(argument, "-h") == 0) || (strcmp(argument, "/h") == 0) || (strcmp(argument, "-?") == 0) ||
(strcmp(argument, "/?") == 0))
{
error = true;
}
}
if (error)
{
printf("\n\nOptional Custom Test Settings:\n");
printf(" --depth_delay_off_color <+/- microseconds>\n");
printf(" This is the time delay the depth image capture is delayed off the color.\n");
printf(" valid ranges for this are -1 frame time to +1 frame time. The percentage\n");
printf(" needs to be multiplied by 100 to achieve correct behavior; 10000 is \n");
printf(" 100.00%%, 100 is 1.00%%.\n");
printf(" --skip_delay_off_color_validation\n");
printf(" Set this when don't want the results of color to depth timestamp \n"
" measurements to allow your test run to fail. They will still be logged\n"
" to output and the CSV file.\n");
printf(" --master\n");
printf(" Run device in master mode\n");
printf(" --subordinate\n");
printf(" Run device in subordinate mode\n");
printf(" --index\n");
printf(" The device index to target when calling k4a_device_open()\n");
printf(" --capture_count\n");
printf(" The number of captures the test should read; default is 100\n");
printf(" --synchronized_images_only\n");
printf(" By default this setting is false, enabling this will for the test to wait for\n");
printf(" both and depth images to be available.\n");
printf(" --subordinate_delay_off_master_usec <+ microseconds>\n");
printf(" This is the time delay the device captures off the master devices capture sync\n");
printf(" pulse. This value needs to be less than one image sample period, i.e for 30FPS \n");
printf(" this needs to be less than 33333us.\n");
printf(" --no_startup_flush\n");
printf(" By default the test will wait for streams to run for X seconds to stabilize. This\n");
printf(" disables that.\n");
printf(" --exposure <exposure in usec>\n");
printf(" Deault is manual exposure with an exposure of 33,333us. This will test with the manual exposure "
"setting\n");
printf(" that is passed in.\n");
printf(" --auto\n");
printf(" By default the test uses manual exposure. This will test with auto exposure.\n");
printf(" --60hz\n");
printf(" <default> Sets the power line compensation frequency to 60Hz\n");
printf(" --50hz\n");
printf(" Sets the power line compensation frequency to 50Hz\n");
return 1; // Indicates an error or warning
}
int results = RUN_ALL_TESTS();
k4a_unittest_deinit();
return results;
}